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SUMMARY

A dynamic network is a mathematical graph representation for time-varying natural

systems that consist of many independently interacting entities. In particular, dynamic

networks are most useful when the system exhibits extremely complex behavior and is

continually changing over time, and when only a record of the interactions between entities

are observed. In these cases, the goal is to learn about the underlying natural system by

studying the dynamic behavior of the entities in it. By dealing with a graph representation,

we can abstract away the increasingly diverse sources of dynamic network data, and extract

information from the dynamics of interactions alone.

We start by analyzing how the change in structure of networks are quantified over time.

This is a fundamental technique used in a variety of fields: for example, can we determine

if the average shortest-path length between Internet routers is gradually decreasing from

samples of its structure over time? By analyzing a bibliographic database like DBLP, can

we conclude that publishing scientists are forming increasingly more connected collabora-

tion networks? We survey existing techniques, and make a case for more sophisticated

measurement and mining methods.

The first of these new methods is an efficient Fourier-like decomposition for dynamic

network data that allows us to analyze the periodicities and periodic patterns present in

a dynamic network dataset. Using this tool on several datasets, we find that the method

is both efficient and able to recover a spectrum of plausibile periodicities in real dynamic

xii



SUMMARY (Continued)

networks. Given that there is interesting information that can be extracted from network

dynamics, the second new technique proposed is a data mining technique for finding inter-

actions in a dynamic network where the occurrence of one predicts the other. This allows

us to tease apart the parts of a network that are regular and predictable.

All the methods we propose serve the broader goal of characterizing and quantifying net-

work dynamics, as advanced forms of measurement that make a minimal set of assumptions

about the underlying system.
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CHAPTER 1

INTRODUCTION

This thesis is about dynamic network data, with an individual emphasis on each word. In

the most general sense, a dynamic network is a very powerful mathematical representation

for time-varying systems that consist of many interacting entities. In particular, dynamic

networks are most useful when the system exhibits extremely complex behavior and is

continually changing over time, and when only a record of the interactions between entities

are observed. One of the best known instances of network representation applied to a real-

world system is the social network (Wasserman and Faust, 1994), where the relationships

between people are mapped into a web-like network. The structure of this web of human

connections has been used for decades to gain insight into the structure of human societies

and behavior, and more recently animal societies and behavior as well. A dynamic network is

a much more recent and powerful representation than a canonical social network that allows

one to explicitly map the changing structure of such a web over time. It is a generic, graph-

theoretic representation that can be applied to systems much more diverse than human and

animal social connections. In this thesis, we will describe correspondingly generic methods

for analyzing any dynamic network dataset in successively more complex ways.

The focus of this thesis is on developing generic analytical methods, rather than focusing

on the analysis of networks from a specific domain. Since the diversity of sources of dynamic

network data has been steadily increasing (Newman, 2003), the problems in this thesis are

1
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driven by the need for analytical tools that are powerful under a minimal set of assumptions,

and as agnostic as possible to the characteristics of any single class of domains. As examples

of this data diversity, dynamic network datasets can be produced by massive industrial

logging systems attached to communications switches, or by researchers scraping the World

Wide Web from a laptop; by social scientists painstakingly interviewing human subjects

over many years, or by automatically processing the log files from a web server. Where this

data might have earlier been condensed into simpler formats, new techniques for handling

very large dynamic networks can now enable more powerful network analysis. In particular,

this thesis examines and builds tools for analyzing the dynamics of networks, i.e., the way

in which its structure is changing over time, to extract information about the underlying

system. The tools developed here fit between the statistician John Tukey’s original notion

of exploratory data analysis (Tukey, 1980), where the focus is on probing data to generate

questions and hypotheses for subsequent investigation1, and modern data mining, where the

focus is on extracting the statistically ‘interesting’ parts of massive datasets under various

definitions of what constitutes interesting.

Returning to the three emphasized words in the opening statement, a network is a graph-

theoretic representation of a system where individually identifiable entities, either physical

or abstract, interact with each other. Almost any interconnected system can be represented

as a network, the most common representation for which is a graph with labeled vertices.

1As opposed to confirmatory data analysis methods like hypothesis testing, etc., which presume
the existence of a hypothesis.
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Figure 1 shows an example of a graph drawing of three different network datasets. Figure 1a

is a scientific co-authorship network, in which vertices represent individual researchers in

theoretical computer science, and an edge between any pair of researchers indicates that

they have published an academic paper together. Collaboration and citation networks can

be easily extracted from computerized bibliographic databases. Figure 1b is a network

representation of a type of animal association data that is routinely collected by ecologists

and field biologists. Ecologists recorded social associations between wild horses on Shack-

leford Island, North Carolina over a period of three months.1 Ordinarily, this association

data might have been summarized into simpler statistics such as the mean group size, but

networks offer a powerful new way to visualize and analyze all the information present in

association data. Finally, Figure 1c illustrates the fact that network datasets can emerge

from unusual places. The Internet Movie Database maintains a large online repository of

publicly available photographs of actors, musicians, movie directors, and other individuals

associated with the entertainment industry in the United States, taken at various times

when the individuals in question appear in public. These photographs lead to a natural

approximation of the professional association network between these individuals, and how

it changes over time.2

Moving on to the second emphasized word in the opening statement of this chapter,

we focus on dynamic networks in this thesis. It should be clear that the systems shown

1Data courtesy of Prof. Daniel I. Rubenstein of the Princeton Equid Research Group.
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(a) Co-authorships of academic papers be-
tween researchers in theoretical computer sci-
ence.

(b) Social associations
between wild horses on
Shackleford Island, North
Carolina.

George Clooney

Jamie Foxx

Gwyneth Paltrow
Nicole Kidman

Cameron Diaz

John Travolta

Brad Pitt

(c) Social associations of the
top 7 Hollywood celebrities by
PageRank, determined by co-
appearance in publicly avail-
able photographs.

Figure 1: Three examples of physical systems represented as networks.

in Figure 1 are not frozen in time, but are in essence ‘network snapshots’ of continually

changing systems.1 New researchers are continually born, and existing researchers form

new collaborations, so the co-authorship network in Figure 1a is certainly evolving over

time, as are the other two networks depicted. There are therefore two components to most

networks: its structure at any point in time, such as the visualizations in Figure 1, and the

dynamics of the underlying system that drive the formation and evolution of this structure

2The IMDB data is obtained using a method (photographing public sightings) that is curiously
similar to the one used to collect social association data on the Shackleford horses and other wild
animals (Lahiri et al., 2011), and indicative of the increasing use of technology to collect association
and interaction data using technologies such as short-range wireless links and GPS positioning (Juang
et al., 2002).

1The reason why these static snapshots allow us to draw any inferences about the system at all is
a network analogue of the concept of statistical consistency: under certain assumptions, the larger
our snapshot gets, the more likely it is to be an accurate representation of the underlying system.
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Figure 2: Individual network snapshots from five consecutive days of the IMDB photo-based
dynamic network. A different portion of the larger, aggregate network is shown in Figure 1c.

through time. These dynamics have generally been difficult to study because of the limited

availability of data with a temporal component. However, this has changed with recent

technological advances, resulting in large and detailed datasets that depict the structures

shown in Figure 1 through the time dimension.

Given a dynamic network dataset, we first address the most basic of analytical tasks:

• How are network properties changing over time? Graph theoretic measures summarize

the structure of a graph into numeric scalar or vector values. Some examples are the

basic counts of vertices and edges in a graph, the empirical distribution of shortest-

path lengths between all pairs of connected vertices, and the spectrum of a graph.

Since a dynamic network is a graph that changes over time, a fundamental question

to ask is if and how these measures are changing as the network changes. For example,

are scientific co-authorship networks getting denser over time, possibly indicating that

collaboration between scientists is on the rise? Is the average number of hops between

routers on the Internet decreasing over time, even at the rate that the Internet is
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currently growing? And could a trend in its clustering properties over time suggest,

for example, that simpler decentralized packet routing algorithms could be used for

efficient routing of packets (Kleinberg, 2000)?

In Chapter 2, we start with a methodological description of how basic structural prop-

erties of dynamic networks are measured from a collected dataset. Among other uses, these

measurements form the basis of a very large class of generative stochastic models for the dy-

namics of the underlying physical system (Chakrabarti et al., 2010), and which are also used

to generate realistic synthetic data to test network-based algorithms (Bilgic and Getoor,

2008). We note that dynamic network datasets are almost always susceptible to various

kinds of non-trivial measurement errors and missing data issues, so it is important to select

graph measures that are robust under such circumstances. While the effects of sampling

biases and missing data have been extensively studied in the context of a single static net-

work (Ghani et al., 1998; Costenbader and Valente, 2003; Kossinets, 2006; Achlioptas et al.,

2009), this has not been the case with dynamic measurements of networks. We show that

the temporal properties of dynamic networks as reported in the literature use one of two

basic aggregation methods, and a small set of simple graph theoretic measures. We also

show that almost all of these measures are sensitive to incomplete data under one of the

two aggregation methods, and can erroneously suggest extremely prominent trends where

none, or contrary ones, truly exist.

We therefore demonstrate that even the task of determining how basic network mea-

sures like diameter are changing over time is not necessarily a settled issue. We suggest
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some alternatives, but conjecture that there is no generally applicable way to correct or

even estimate the measurement bias without making additional assumptions about network

dynamics and the size and gross structure of the missing data. This suggests the need

to look laterally at a network through the time dimension directly to analyze dynamics.

Noting that a dynamic network is analogous to a time series of changing graphs, we choose

approaches that are inspired by methods for dealing with numeric time series. In signal

analysis, the Fourier transform is a standard tool that is used to decompose a time-varying

signal into a sum of sinusoidal components; we develop a similar tool for dynamic networks

in Chapter 3 to answer the following question.

• What are the periodicities and periodic patterns present in a dynamic network? In

systems like communications networks, there are likely to be patterns of interactions

between specific individuals that recur or a periodic basis. If we can extract all such

patterns in a tractable, succinct representation, we can determine a spectrum of peri-

odicities in the interactions within a physical system similar to the frequency domain

representation of time-varying numerical signals. For example, at what frequency do

research groups publish in different fields, and do animal associations exhibit cyclical

behavior? Alternatively, the periodic patterns themselves could be used for algo-

rithmic tasks like clustering individuals into communities of individuals that interact

periodically.

Our formulation of the problem above incorporates the notion of local periodicity, where

a pattern of connections between individuals may exhibit periodic behavior only temporarily
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relative to the time extent of the dataset. Although there have been a number of approaches

to mining periodic patterns in related types of data, we develop an asymptotically more

succinct formulation of the problem that does not lose any information present in other

formulation. Furthermore, our formulation of the problem naturally yields a polynomial

time and space algorithm in the size of the input dataset, stemming from a worst-case

output size that is provably polynomial in the size of the input. Our algorithm efficiently

mines periodic patterns at all possible periodicities (a number of other mining algorithms

require the user to input ‘likely’ periodicities), performing orders of magnitude faster on

real datasets than its theoretical worst-case bound, and the frequency domain spectra we

obtain reveal very plausible principle periodicities in various physical systems.

Since we were able to extract an appreciable amount of information from our periodic

pattern mining formulation, a natural extension would be to attempt to detect more sophis-

ticated forms of temporal relationships than periodicity. In doing so, we have to abandon

the frequency-domain spectrum of periodicities, and focus solely on structural patterns

instead:

• Which interactions in a dynamic network are strongly correlated in time? In Figure 2,

it is difficult to tell whether any edges are temporally correlated with each other. In

networks with hundreds of thousands or millions of edges that may appear entirely

chaotic, is it possible to wean out the few that are temporally correlated? For example,

can we look through the plethora of interactions and tell that a particular pair of

scientists publishing a paper in the current year is a good predictor of a different pair
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of scientists publishing a paper in the following year, or that an e-mail from a student

to their Ph.D. advisor at any time is a reliable predictor of a reply within an hour?

Given the sheer size of typical dynamic networks, this problem can easily become in-

tractable. Although the underlying physical system being represented by a dynamic network

can sometimes arise from applying simple local rules, going in the other direction without

knowing those rules is a formidable problem. We propose a formulation of this problem

in Chapter 4 to mine a rich but limited set of predictably coupled interactions in a dy-

namic network. When posed as a data mining problem, the patterns of interest are specific

interactions that reliably predict future occurrences of themselves or other interactions.

Our contribution consists of a novel method of modeling and evaluating dependencies be-

tween interactions, in order to yield data mining results with a degree of generalization. In

the later part of Chapter 4, we demonstrate some practical applications of mining strong

relationships.

In the next section, we briefly survey the historical development of dynamic network

data for context, as well as other related representations. Each subsequent chapter deals

with one of the three problems described earlier, and more detailed surveys of the literature

specific to each problem are contained within individual chapters. Section 1.2 contains a

summary of the technical contributions of this thesis, and Section 1.3 briefly describes some

of the datasets used throughout the thesis.
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1.1 A brief history of network data

In the introductory paragraph of this thesis, we mentioned that there would be an indi-

vidual emphasis on data, since all the methods presented in this thesis deal with inferring

aspects of the underlying system from a dynamic network dataset. A number of develop-

ments in network analysis have been directed by the availability of large, comprehensive

datasets, and so we briefly summarize the history of dynamic network data in this section,

as well as the theoretical developments that accompanied the availability of datasets with

greater detail.

Prior to the late 1990s, the analysis of real networks was an endeavor that was largely

restricted to the fields of sociology, bibliometrics, and computer networks. In sociology,

social network analysis had precedents as far back as the 1930s (Moreno, 1934). However,

the only practical way to collect network data was interviews with subjects. This severely

limited the size of datasets and the ability to make inferences at a large scale. For exam-

ple, a benchmark network dataset in social network analysis, called the Southern Women

dataset, consists of just 18 individuals and can be printed in its entirety in a publishable

table. A meta-analysis of this dataset identified 21 published attempts at analyzing it, each

with different methods (Freeman, 2003). Another sociological dataset, called the Zachary

karate club, consists of approximately 100 individuals (Zachary, 1977), and is still used to

test modern analytical methods (Newman and Leicht, 2007; Tong et al., 2010). By mod-

ern standards, these would be woefully inadequate datasets, but have nonetheless helped
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develop a comprehensive literature on analytical techniques that use graph theory to gain

sociological insights (Wasserman and Faust, 1994).

The current interest in network analysis, both static and dynamic, can probably be

largely attributed to two developments in the late 1990s. The first is that physicists dis-

covered that real networks look quite similar in certain ways, but at the same time quite

different from purely random graphs. The best-known precursor to modern dynamic graph

models is the 1960 publication of Erdős and Rényi (Erdős and Rényi, 1960), which analyt-

ically describes the structural properties of randomly generated graphs as the number of

vertices (and edges) is increased. The so-called Erdős-Rényi (ER) random graph model was

not intended to be realistic models, with the authors noting that “if one aims at describing

... a real situation, one should replace the hypothesis of equiprobability of all [edges] by some

more realistic hypothesis” (Erdős and Rényi, 1960). In 1998, Watts and Strogatz (Watts

and Strogatz, 1998) showed that many types of real networks are highly clustered, unlike

ER graphs, with short average path lengths relative to comparable ER graphs. This lead to

the first realizations of Erdős and Rényi’s “more realistic hypothesis” for networks, in the

form of the small-world hypothesis (Watts and Strogatz, 1998) and the preferential attach-

ment model (Barabási and Albert, 1999). Bibliographic databases were some of the earliest

testbeds for these hypothesis. The research questions, however, were rooted in statistical

mechanics, and could broadly be classified into the development of generative models to ex-

plain observed network characteristics (Newman, 2003), and the analysis of ‘critical points’
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in parameters governing the formation of network, at which networks exhibit sudden drastic

changes in properties (Dorogovtsev et al., 2008).

The second development in the late 1990s was the wide-scale growth of the World Wide

Web and the adoption of search engines. Commercial web crawlers were indexing the Web

at continually increasing scales, leading to possibly the largest dynamic network dataset in

existence. In 1998 and 1999, two of the most successful algorithms for ranking webpages

were based on network analysis: the HITS algorithm (Kleinberg et al., 1999), and the

PageRank algorithm (Brin and Page, 1998). As a result, a number of algorithmic questions

dealing with either static or dynamic network came to the forefront. In addition to the

ranking algorithms powering search engines, some of the focus in computer science was on

algorithmic issues such as routing in decentralized networks (Kleinberg, 2000; Kumar et al.,

2005), targeting influential nodes in a network for marketing or immunization (Kempe et

al., 2003; Aspnes et al., 2007; Domingos and Richardson, 2001), and characterizing specific

computer networks such as the Internet (Faloutsos et al., 1999), the Web (Kleinberg et al.,

1999), and recently, online social networks (Kumar et al., 2006; Hu and Wang, 2009; Ahn

et al., 2007).

Finally, we note that at approximately the same time in the mid 1990s, the field of

data mining was maturing rapidly, and although it would not be acknowledged till later,

a number of techniques developed in data mining would be applicable to dynamic network

data. Mining for frequent patterns in large transactional databases, also known as ‘market

basket data’, was one of the earliest problems in data mining (Agrawal and Srikant, 1994).
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A transactional database records co-occurrences of items, with the standard example being

a supermarket retail database that records the items in each customer’s ‘basket’. The

database can then be thought of as a set of subsets drawn from a universal set of ‘items’.

Although there is generally no notion of order between the transactions in such a database,

some algorithms that operate on transactional databases do require an ordering (Özden et

al., 1998; Tung et al., 1999).

Dynamic networks are graphs with unique node labels, a property that can be mapped to

transactional databases for certain tasks (Lahiri and Berger-Wolf, 2008; Lahiri and Berger-

Wolf, 2007). Since each node within the graph of a single timestep is unique, an edge

between any pair of nodes can be identified uniquely. Therefore, all nodes and edges can

be uniquely mapped to the set of integers. Each timestep in the dynamic network becomes

a transaction in the database, with each vertex and edge in the timestep being converted

to an item. The entire dynamic network can then be treated as a transactional database,

with a direct mapping between algorithmic tasks such as maximal common subgraph and

set intersection (Dickinson et al., 2003; Lahiri and Berger-Wolf, 2008; Lahiri and Berger-

Wolf, 2007). Note that the mapping is not valid for tasks where graph properties that have

no equivalent mapping in set notation, such as connectivity, are required. However, as a

benefit, frequent subgraphs can be mined using current tools for frequent itemset mining.

Similarly, sequences of symbols can be treated as discrete time series if they are scanned

in a temporal direction. Although sequence data is almost ubiquitous in bioinformatics, it

is also used to represent event logs, such as hardware and networks alert logs (Domeniconi
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et al., 2002; Vilalta and Ma, 2002). Event logs (or to be precise, multievent logs) are slightly

more general than sequences, because event logs can often contain more than one symbol

or event at each position (Oates and Cohen, 1996; Oates et al., 1997). With this property,

multievent logs can be considered equivalent to an ordered transactional database. An ad-

vantage of this mapping is that it also forms a link between dynamic networks, transactional

databases, and the well-studied area of machine learning in sequences (Dietterich, 2002).

Although some assumptions made for learning in sequences might not hold for dynamic

networks1, the general techniques are still be applicable to networks. This connection also

allows one to capitalize, if needed, on well established algorithms for mining frequently

occurring sequential patterns (Pei et al., 2004).

1.2 Summary of contributions

The following is a summary of contributions in this thesis.

1. (Chapter 2) A survey of how dynamic networks are measured over time to yield

time series of various graph theoretic properties. Specifically, we find that almost all

literature on measuring dynamic networks uses one of two aggregation methods, and

a handful of simple graph theoretic measures.

(a) When the commonly growing network aggregation method is used, many common

trends observed in dynamic networks can be explained by a doubly stochastic

1In particular, the scale and dimensionality (i.e., of the adjacency matrix) of dynamic networks
is several orders of magnitude larger than typical multi-event sequences, and the dimensionality may
not even be known in advance.
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sampling process involved in the collection of data, and not as an intrinsic feature

of the network itself.

(b) Using simulations on several network models, we show that networks that exhibit

certain temporal properties, when subjected to even a small amount of missing

temporal data, erroneously display either a contrary trend, or no trend at all.

(c) Given a dynamic network dataset, we propose a method using statistical ran-

domization (permutation) tests to determine how likely it is that the properties

of the underlying network are in flux under various assumptions.

(d) We note that measuring dynamic network datasets in the presence of noise and

missing data is a difficult issue, and suggest some alternatives. If networks must

be measured over time in the presence of noise and missing data, then it is

important to either pick a measurement method that is less prone to biases, or

to choose measures or methods that are more robust.

2. (Chapter 3) The development of a Fourier-like decomposition for detecting periodicity

and periodic patterns in dynamic networks.

(a) We propose a new mining problem for dynamic networks that involves periodicity

detection and is well grounded in theory.

(b) We prove a polynomial upper bound in the size of the input on the number of

patterns in a dynamic network that can satisfy our mining criteria. This is in
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contrast to related periodic pattern mining formulations that are intractable in

the worst case and include redundant information in the output.

(c) We describe an efficient polynomial-time algorithm that makes a single pass over

the data.

(d) We show how our algorithm extracts both a spectrum of periodicities from the

network, as well as the basis patterns that comprise the spectrum.

3. (Chapter 4) The development of a technique for finding strong temporal correlations

between edges in dynamic networks. A correlation is defined as strong if it holds a

degree of predictive power on unseen data.

(a) We approach the intractability of the general problem by capitalizing on the

graph-theoretic properties of real networks. Specifically, the skewed degree dis-

tribution of real networks is used to build a tractable dependency structure.

(b) We describe a problem formulation that works on a continuous time stream of

interaction data, without requiring it to be quantized into discrete timesteps.

We also describe an evaluation framework for our continuous-time formulation.

(c) We describe a novel Hidden Markov Model (HMM) formulation that models

the time delay between any pair of edges. Using the dependency structure we

described earlier, we mine pairs of edges that are best modeled by this HMM.
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1.3 Datasets used in this thesis

Dynamic networks can often appear in different guises. For example, ‘call graphs’ are col-

lected by telecommunications companies in real time, even though the number of customers

can number in the millions (Nanavati et al., 2006). GPS and radio collars allow ecologists

to tag wild animals and the social interactions between them (Juang et al., 2002; Fischhoff

et al., 2007), resulting in continuous streams of proximity data. In humans, a similar effect

is achieved by monitoring connections between Bluetooth-equipped cellphones (Eagle and

Pentland, 2006), manually annotated photographs (Lahiri and Berger-Wolf, 2008) or the

headers of email traffic (Chapanond et al., 2005; Diesner and Carley, 2005). In computer

networks research, a time-series of labeled graphs representing network traffic has been used

as the basis for network intrusion detection (Bunke, 2003; Bunke et al., 2005). The following

is a description of the datasets that are used in various parts of this thesis.

1. The Enron email network is inferred from the mailboxes of about 150 employees

of the former Enron Corporation (Shetty and Adibi, 2004). The contents of the

mailboxes were publicly released by the Federal Energy Regulatory Commission in

the course of investigations into the workings of the company, and consist of the full

text and headers of emails, both sent and received. This allows us to construct a

partial, dynamic view of email communications within a large, complex organization

like Enron, and has spurred much research in various areas (Diesner and Carley,

2005; Chapanond et al., 2005; Shetty and Adibi, 2004). Each vertex represents an

email address, with a directed edge from the sender of an email to all its recipients.
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The timestep quantization is one day, although arbitrarily smaller quantizations are

also possible due to the presence of full email header information.

2. The Plains Zebra and Grevys Zebra networks are observations of social associa-

tions in two species of wild Zebra in Kenya (Fischhoff et al., 2007; Sundaresan et al.,

2007). They are currently collected by direct visual observations made by ecologists,

although more advanced and accurate methodologies like radio and GPS collars are

being investigated (Juang et al., 2002). The manual collection of interaction data

results in missing data, but for Grevys Zebra, the missing data rate is estimated to be

under 50%. Both species of Zebra are fission-fusion species, which means that they

come together in groups that subsequently dissolve to form new groupings. An anal-

ysis of dynamic communities has confirmed differences in the grouping habits of the

two species (Tantipathananandh et al., 2007). Each vertex represents an individual

Zebra, identified by the pattern of stripes on specific parts of its body, and an edge

represents a social association as determined by ecologists. The timestep quantization

is one day, which corresponds to the frequency of the ecologists’ observation rounds.

3. The IMDB Photo Network is collected from metadata about people tagged in pho-

tographs on the Internet Movie Database (IMDB) (Lahiri and Berger-Wolf, 2008).

The photographs are generally of actors, musicians, directors and other people as-

sociated with the entertainment industry, and may either be candid or professional

shots. Since IMDB is not a general photo-sharing site and its pictures are labeled

by staff members, one might reasonably assume that the people tagged in photos are
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‘celebrities’ of some sort and that a degree of social association exists between them.

This methodology is quite similar to the Zebra sighting datasets, and the observed

structure is a partial view of the true set of interactions. Metadata on a total of

194,430 photographs were collected, with about 75,000 photographs containing more

than one person. Each vertex corresponds to a manually identified and disambiguated

person (conducted either by IMDB or professional photo agency staff), with an edge

representing co-appearance in a photograph. The discretization timestep is one day.

4. Reality Mining was an experiment conducted at MIT to collect a variety of data re-

lated to movements and social dynamics in humans (specifically, students at MIT) (Ea-

gle and Pentland, 2006). It involved equipping volunteers with cellphones augmented

with special tracking software. Among the recorded data was physical proximity data

inferred from two cellphones being able to establish a direct Bluetooth connection,

with the maximum range for such a connection being approximately 30 ft. (Bluetooth

SIG, Inc., 2009) Each vertex represents a study participant with a Bluetooth-equipped

cellphone, and an edge represents physical proximity of less than 30 ft. The quanti-

zation timestep is four hours.

5. Call Detail Records-C is a Call Detail Record (CDR) dataset that is collected

whenever a phone subscriber makes a call to another telephone number. In the process,

information such as the originating and destination number (encrypted), and the time

and date of the call are logged. We obtained 4 months of CDRs from mobile phone

subscribers in a dense urban area. For this dataset, we only considered subscribers
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that made at least 3 phone calls per day, and included all successful phone calls

made or received during the observation period. We treat a phone call between two

subscribers as an undirected edge, because phone conversations, as opposed to phone

calls, are inherently bi-directional. The number of nodes in the network and the

number of phone calls recorded are on the order of 105 and 107 respectively. We are

unable to disclose further details due to privacy considerations.

6. Call Detail Records-J is similar to the CDR-C dataset, but includes CDRs from all

phone users of a large geographical region (an entire state) of a particular country, for

a period of 5 months, without any sampling bias as in CDR-C. It is also unlikely that

there is significant overlap between the customers in CDR-J and CDR-C due to the

geographical separation between the regions. The number of nodes and interactions

are on the order of 106 and 107 respectively.

1.4 Declaration of prior published work

Parts of Chapters 3 and 4 appear in the following publications:

1. M. Lahiri and T.Y. Berger-Wolf. Periodic subgraph mining in dynamic networks.
Knowledge and Information Systems, Volume 24, Issue 3 (2010), p. 467.

2. M. Lahiri and T.Y. Berger-Wolf. Mining Periodic Behavior in Dynamic Social Net-
works. In Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), Pisa, Italy. December 2008.

3. M. Lahiri and T.Y. Berger-Wolf. Structure Prediction in Temporal Networks using
Frequent Subgraphs. In Proceedings of the IEEE Computational Intelligence and Data
Mining Conference (CIDM 2007), Honolulu, Hawaii. April 2007.



CHAPTER 2

STRUCTURAL PROPERTIES OF NETWORKS OVER TIME

A fundamental question in dynamic network analysis is to determine how the graph-

theoretic properties of a network are changing over time when the network is not com-

pletely visible. A number of diverse questions depend on our ability to accurately measure

structural changes in real networks: for example, is the average number of hops between

Internet routers increasing or decreasing as the Internet grows, and does the pattern of col-

laborations between publishing scientists indicate that scientists are forming an increasingly

tighter-connected social network? These issues are important in computer network analysis

as well as physics and sociology, and in general, any domain where a physical system can

be represented as a partially observable graph structured process that generates a chang-

ing network over time. In these cases, the change in the structure of the physical system

between any two time points is quantified by the change in some graph-theoretic measure

evaluated at those points.

There are at least two reasons to look for trends in the time evolution of various graph

measures.

• Generative network models. Since the true dynamical processes that generate real

dynamic network datasets are too complex to model, a line of research aims to de-

velop simple dynamical processes that can approximate the true process by generat-

21
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ing networks with a given trend over time in some graph measure (Leskovec et al.,

2007; Akoglu et al., 2008; Akoglu and Faloutsos, 2009; Bonato et al., 2009; Chakrabarti

et al., 2010; Du et al., 2010). These dynamical processes can very generally be viewed

as probabilistic algorithms driven by uniform random noise that convert one graph into

another. Inferring the parameters of these processes from data is generally intractable,

so a common method of justifying various dynamical graph generation models is to

show that they reproduce temporal trends in measures comparable to an average

temporal trend found in multiple real datasets. Naturally, this presumes that the

temporal trends measured from empirical data were accurate and not artifacts of the

data sampling process, an issue that we show is not trivial.

• Scientific datasets. In scientific datasets, a sudden fundamental change in the struc-

ture of a network can sometimes be detected by tracking a correspondingly large

change in an appropriate graph measure. In animal association networks from ecol-

ogy, for example, differences in network measures are used to determine behavioral

differences between species (Sundaresan et al., 2007).

In an ideal world, we would simply obtain a sequence of snapshots of a graph structured

process over time and periodically measure properties of interest in order to determine a

trend. In the real world, however, our observational capabilities are severely limited in terms

of how far back in time datasets reach, how complete each snapshot is, and the mechanisms

by which network data is collected. In this chapter, we examine how these issues are

tackled by surveying the growing literature on dynamic network measurements. Several
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recent empirical studies suggest that the structures of a variety of otherwise disparate real

networks are evolving in similar ways (Leskovec et al., 2005; Ahn et al., 2007; Menezes et al.,

2009). We describe in detail the experimental methodology used to reach these conclusions,

and investigate how sensitive they are to various kinds of missing data.

This chapter is organized as follows. In the next section, we present a methodology sur-

vey describing typical procedures for measuring graphical properties of a network over time,

as well as a characterization of dynamic network datasets into two broad classes: interaction

networks, and citation networks, depending on the nature and permanence of interactions

(edges). Section 2.2 presents a literature review and summary of published empirical results

on the graphical properties of real dynamic networks over time. All the published results

on networks that we survey can be classified as either interaction or citation networks. In

order to assess the significance of the many common temporal trends in network proper-

ties (e.g., , decreasing average shortest path length over time), we experimentally analyze

whether these trends necessarily reflect the reality of the underlying system in the presence

of missing data and observational limitations in the data collection process. Section 2.3

deals with citation networks, and Section 2.4 deals with the more common class of inter-

action networks. In Section 2.5, we summarize our findings and list some suggestions for

future research.

2.1 Networks, measurement, and error

Dynamic networks are explicit representations of the change in the structure of a physical

system over time. These systems are generally complex real-world phenomena that can be
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modeled as a set of uniquely identifiable entities interacting with each other over time. The

entities can act independently of each other, and the interactions between them can occur

in arbitrary ways. The global structure of which entities have interacted with which other

entities can therefore be a complex network-like structure that (presumably) evolves over

time. Quantifying the change in the structure of such a system over time is the first step

in analyzing a dynamic network.

The most immediate way of quantifying the change in a dynamic network between

two time points is to simply measure its structure at both time points and compute the

difference. There are numerous ways to measure a graph, but in a very general sense that

covers the most popular methods, a measure M can be thought of as a function from a

graph to a real number.

M : G 7→ R where G = (V,E)

Some simple measures include the number of nodes and edges in a graph, the average

shortest path length between all pairs of connected nodes, and the largest eigenvalue of the

adjacency matrix. These are static measures that operate on a single graph; an example of a

measure that operates on a graph through time is the graph edit distance measure between

consecutive graphs used in anomaly detection in computer networks (Bunke, 2000). Given

a dynamic network dataset, one could simply construct a graph of all interactions up to a

given time point, measure the graph, and subsequently produce a time series of measure

values by repeating the process, which would then presumably characterize the change in

the structure of the system.
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A number of assumptions need to hold before this is true. Clearly, the measure M that

is used must adequately represent true change in the physical system, at least with respect

to the reason for measuring the dynamic network. For example, if we want to quantify the

change in a computer network to study the effect of decentralized routing protocols, the

average shortest path length might be a good measure, whereas the raw number of nodes

might not be. Secondly, if there are sampling and incomplete data issues in the dataset (as

is the case with almost all empirical time-series datasets), then the chosen measure must

be robust to sampling errors. In particular, if we are to measure a dynamic network at

successive time points in the presence of sampling error, then the resultant time series of

measure values should be similar to the true underlying time series, at least qualitatively.

There also exist two common methods for aggregating dynamic network data into a

single graph that can be measured. For example, given a dynamic network dataset, we

might have identified two time points at which we wish to measure the structure of the

underlying system. Both aggregation methods can be applied to the same data under

certain conditions, and yield very different results because they make different assumptions

about the data. Adding to the subtleties of choosing an aggregation method, we have

also identified two different classes of network data that require different treatment. This

distinction between aggregation methods and network data classes does not appear to have

been explicitly made, particularly in terms of measurement biases involved in mismatching

aggregation methods, graph measures, and network data classes. We start this analysis
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with a description of network data classes in the next subsection, and network aggregation

methods in Section 2.1.2.

2.1.1 Network data classes

All the dynamic network datasets described in the literature that we will later review in

Section 2.2 fall into one of two categories depending on the type of physical system being

modeled: interaction networks and citation networks. The overall characteristics of each

class are as follows.

• (Interaction networks) An edge, identified by the labels of its adjacent nodes, can ap-

pear at multiple timesteps. Examples include email networks built from email head-

ers (Leskovec et al., 2005; Diesner and Carley, 2005), where people continually send

emails to each other over time, and similar networks built from phone records (Nana-

vati et al., 2006), logs from physical proximity sensors (Eubank et al., 2004; Ea-

gle and Pentland, 2006), and co-authorship of published scientific articles (Newman,

2001b; Barabási et al., 2002; Leskovec et al., 2005). Each edge in the dynamic network

dataset is therefore a record of a single instance of an interaction between nodes, out

of many other possible instances at different times. Network structure is determined

through the proxy of interactions, which can be regulated by an independent dynamic

process.

• (Citation networks) Unlike interaction networks, citation networks only grow in size

over time with the addition of new nodes and edges, and each edge appears only once

in the observation stream. Thus, in a dynamic network dataset, the appearance of an
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edge at time t implies that the underlying physical system grew by at least one edge

at time t. Their name comes from the canonical example of the directed network of

citations between scientific papers; once a scientific paper is published, its citations

never change, and thus each edge in the dynamic network appears only once over all

of time (Bilke and Peterson, 2001; Nerur et al., 2005; Leskovec et al., 2007). Note that

interaction networks where edges and nodes are deleted very infrequently relative to

growth can also be seen as citation networks at short times. This covers some types

of online social network data where the rate of node and edge addition far outstrips

its removal, to the point where the online ‘friendship’ networks can be seen as citation

networks (Kumar et al., 2006; Krishnamurthy et al., 2008). For the same reason, it

also includes domains such as blog inter-linking networks (Adar and Adamic, 2005).

The distinction between the two classes is important when we use network measures

to represent the change in the underlying physical system. In particular, when a citation

network dataset contains a record of edge (u, v) at time t, we know that the underlying

physical system has increased in size by at least one edge. However, with interaction

networks, particularly when we do not have the entire temporal history of the network, we

cannot tell if the record of edge (u, v) at time t represents true growth in the underlying

system, or is just the re-occurrence of an interaction that had also occurred some time

before. In other words, there is a process that generates interactions along a growing

network structure, and using interactions as a proxy for network structure requires that we

account for the sampling error induced by the dynamics of the interactions, particularly
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at short times and without full temporal history. This is closely tied to the aggregation

method (or lack thereof) used to assemble interaction data into a time series of graphs,

which is the topic of the next subsection.

2.1.2 Network aggregation methods

We can view citation and interaction network data types through the lens of a sampling

process (generally involved in data collection) on a true underlying network that is growing

over time. The sampling process generates a sequence of graphs drawn from the true

underlying process, which we call the observations. In the case of interaction networks,

the sampling process reveals a set of interactions each time a group of entities interacts.

In the case of citation networks, observations consist solely of (subsets of) new edges and

vertices that are added to the network, with the constraint that the same edge must not

appear twice. These samples are generally revealed over time, starting from an arbitrary

time relative to the underlying process, from which we must infer both an initial structure

as well as any change in it.

The earliest approach to network data was to treat the underlying process as being in

a steady state with respect to some graph measure M .

Definition 2.1.1. (Steady state) A physical system is in equilibrium or a steady state with

respect to a graph theoretic measure M if the partial derivative of M measured on the

system with respect to time is zero.

∂M

∂t
= 0
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Vertices and edges may therefore be added to or deleted from the system, but the

dynamic behavior of a measure of interest M is independent of time.1 If we assume that an

underlying system is in a steady state with respect to measure M , and assuming a consistent

sampling process, we can simply let the observation sequence converge to a large enough

graph and assume that M measured on this graph is representative of the true value of

M . These steady state and consistency assumptions are the foundation of static network

analysis, which approximates partially stationary dynamic processes as large networks.

Static network analysis has produced a large number of important advances in network

theory, such as the observations that real-world networks tend to have heavily skewed

degree distributions and low average pairwise shortest path lengths (Albert and Barabási,

2002; Newman, 2003; Boccaletti et al., 2006). A number of studies also analyze dynamical

aspects of the sampling process, such as how long typical systems must be observed till

various graph theoretic properties converge to limiting values (Latapy and Magnien, 2006),

and how sensitive measured properties are to different types of sampling error (Costenbader

and Valente, 2003; Kossinets, 2006).

There has also been interest in the dynamic behavior of some measure M of the under-

lying system, with the implicit assumption that the underlying system is not in a steady

state with respect to M (Barabási et al., 2002; Leskovec et al., 2005). Intuitively, the steady

1For example, a growing k-regular graph, one one in which every vertex has exactly k adjacent
edges, is in equilibrium with respect to its degree distribution or any statistic of it, but not necessarily
with respect to other measures.
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Figure 3: Example of a true underlying network, a sequence of observations of it starting
at t = 1, and growing and dynamic interaction representations of the observations. Edge
thickness represents edge weight.

state assumption might not appear to be appropriate for systems as large and chaotic as

the Internet (for example). In this case, observations are aggregated over time, either as a

growing network or a fully dynamic network, into a single graph that is measured with M

at fixed time intervals. Figure 3 depicts how a sampling process on the true underlying net-

work generates observations, depending on whether the underlying network is a citation or

interaction network. These samples of network structure are aggregated using the growing

network method to yield a time series of graphs with measure values P1, ..., Pn. We describe

each aggregation method in more detail below.
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Definition 2.1.2. (Growing network) Observations of the physical system are made at

discrete timesteps. Each observation is accumulated into a single growing graph, which is

measured at fixed time intervals. Aggregating in this manner implicitly assumes that the

underlying process can be represented as a citation network. Let G be the true, underly-

ing network of the physical system being modeled, which is only partially observable and

growing over time with the addition of new vertices and edges (by definition, vertices and

edges are never removed in a citation network). Since G is growing over time, we let its

structure at time t be denoted by an element in the sequence 〈G〉.

〈G〉 = 〈G0, ...〉 where Gt = (Vt,Et)

where Gt is the complete network structure at time t, consisting of a set of labeled vertices

Vt = {vi : vi ∈ N} and a set of directed or undirected edges Et = {(vi,vj) : vi,vj ∈ Vt}.

Since vertices and edges are only added to the system, we have a monotone property on the

vertex and edge sets over time.

Vt ⊆ Vt+1 (2.1)

Et ⊆ Et+1
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Since the true underlying network is only partially observable, we instead obtain finite

samples of its graph structure over time, called the observation sequence 〈O〉, starting at

some arbitrary time t0 > 0.

〈O〉 = 〈Gt0 , ..., Gtn〉 where Gti = (Vti , Eti), Vti ⊆ Vti , Eti ⊆ Eti

Due to limitations of the observation process, each observed graph Gt may be a small

fraction of the size of the physical system at that point in time Gt, i.e., |Vt| ≪ |Vt| and

|Et| ≪ |Et|. The growing network aggregation method approximates Gt by aggregating all

samples from the start of observations t0 up to the current timestep into a single growing

network 〈G+〉:

〈G+〉 = 〈G+
t0
, ..., G+

tn〉 where G+
t = (

tn
⋃

i=t0

Vi,

tn
⋃

i=t0

Ei)

Any graph measure M can then be measured on G+
t at fixed intervals, yielding a time-series

that (presumably) approximates the trend of the same property on the underlying network

〈G〉.

A key assumption in the growing network methodology in practice is that the aggregated

growing network at any point in time is a good approximation of the underlying physical

system, including at the (necessarily) arbitrarily chosen time of the first observation t0.

Particularly, the assumption that we can accurately track trends in the underlying process,

either quantitatively or qualitatively, by measuring an aggregated graph of observations
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periodically requires that the measured trend accurately track the trend in the underlying

system.

Definition 2.1.3. (Fully dynamic network) A fully dynamic network approach treats the

underlying system as an interaction network. Observations are aggregated within successive,

non-overlapping intervals of time, and the graph obtained from each interval is measured

independently of the other intervals. When the interval of time is fixed, it is called the

window of the aggregation. It can be seen as a growing network where vertices and edges

are removed after a fixed period of time (the window) unless they appear again within the

window. Thus, depending on the relative rates of vertex and edge addition and removal, a

dynamic network may be structurally growing, in equilibrium, or shrinking. The underly-

ing network 〈G〉 no longer necessarily has the monotonicity property of growing networks

(Equation Equation 2.1).

A variant of this approach weights each edge with a time-decaying function, to emphasize

the impact of more recent changes in graph structure. This is usually practiced in one of

two related ways:

1. Weight each edge by the amount of time that has elapsed since it was last seen, and use

algorithms that take the weight of each edge into account (e.g., (Sharan and Neville,

2007; Acar et al., 2009; Barrat et al., 2004)).

2. Remove edges from the network after a certain period of time if they have not appeared

again, where the amount of time is determined by a decay function (e.g., (Kossinets

and Watts, 2006)).
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The issue of time-decaying relationships in social networks has also received attention in

sociology, such as the formulation of sociologically meaningful decay functions suggested by

data (Burt, 2000).

A practical issue with the fully dynamic aggregation method is that it presumes knowl-

edge of an appropriate window length to aggregate observations over. In practice, this is

usually determined by taking some ‘natural’ quantization of the dataset, such as a window

length of a year for scientific publication data, but this is difficult to determine for some

datasets (e.g., animal association data). Furthermore, some measures M might be sensitive

to the window length, in effect showing trends that are a function of the quantization win-

dow. However, more rigorous methods are needed to determine a good aggregation window

for a dataset, and a complementary set of approaches attempts to find a time aggregation

that minimizes some notion of error in measured dynamic trends (Sun et al., 2007; Sulo et

al., 2010). The growing network method has the practical advantage of not requiring any

additional parameters, and we focus more on this method for the remainder of this chapter.

To illustrate the different situations that might call for growing networks over dy-

namic networks, consider the analysis of e-mail transmission records to deduce the struc-

ture of the underlying association network (Shetty and Adibi, 2005; Kossinets and Watts,

2006; Leskovec et al., 2007). Treating each day as a timestep, the observation corresponds

to the graph structure of e-mails that are sent and received on a given day. This has

definite meaning, as we can investigate the time stream for periodic or other temporal pat-

terns (Lahiri and Berger-Wolf, 2008; Lahiri and Berger-Wolf, 2010; Sun et al., 2007; Acar et
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System Static Growing Fully dynamic

Co-auth. (Newman, 2001b) (Barabási et al., 2002) (Moody, 2004)
E-mail (Ebel et al., 2002) (Leskovec et al., 2007) (Kossinets and Watts, 2006)a

Online (Mislove et al., 2007) (Holme et al., 2004) (Hu and Wang, 2009)
a Time-weighted dynamic network.

TABLE I: EXAMPLES OF PHYSICAL SYSTEMS PAIRED WITH DIFFERENT NET-
WORK MODELS.

al., 2009). On the other hand, consider the discovery of Autonomous Systems (AS) routes

on the Internet through the use of traceroute probes and similar methods (Andersen et

al., 2002; Chen et al., 2002; Vázquez et al., 2002; Leskovec et al., 2007). The temporal

sequence of samples is a product of the observation technique and has no inherent meaning

to the object of interest (the AS topology). Graph theoretic analysis of the sampled graph

would be more meaningful than, for example, looking for periodic patterns. However, since

AS routes are frequently deleted in addition to being added, growing networks might not

be the best representation.

Table Table I illustrates how the same physical system can be represented as different

types of networks, often starting with the same initial data.

2.1.3 Network measures

A number of graph theoretic measures are used to characterize the structure networks.

In this subsection, we survey the measures that are commonly used for characterizing the

graphical properties of networks over time. We describe these measures to demonstrate
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that they are non-trivial and diverse, and to motivate the form of randomized sensitivity

analysis that we propose in later sections, which is agnostic to the chosen measure.

In addition to classical graph theoretic measures like the average and maximum shortest

path lengths between vertices, sociologists have developed a variety of vertex centrality mea-

sures to assess the importance of individual vertices within the larger network (Wasserman

and Faust, 1994), physicists and graph theoreticians have proposed looking at distributions

of fundamental properties (Newman, 2003; Albert and Barabási, 2002; Erdös and Rényi,

1959), and computer science has seen the wide-scale adoption of ranking techniques like

PageRank (Brin and Page, 1998; Langville et al., 2008) and tensor factorization (Sun et

al., 2007; Acar et al., 2009) for analysis, and algorithmic questions posed on real networks,

such as routing (Kleinberg, 2000).

We focus on three basic categories of network properties that have been widely used

to characterize networks that change over time: (1) connectivity, in terms of statistics of

the distribution of shortest path lengths between all pairs of vertices, (2) the density of the

network, both local and global, in terms of the relative numbers of vertices and edges, and

(3) spectral properties of the graph’s adjacency matrix or transformations of it.

2.1.3.1 Connectivity

The distance between two vertices u and v in a graph is generally the length of the

shortest path between the vertices, i.e., the minimum number of edges that need to be

traversed to connect u to v. Let σuv be the length of the shortest path between vertices u
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and v, where σuv =∞ if there is no path between u and v (note that σuv and σvu are not

necessarily equal for directed networks).

Definition 2.1.4. The connectivity of a network can be expressed in terms of summary

statistics of the pairwise shortest path length distribution, i.e., the distribution of σuv for

all distinct, ordered vertex pairs in a directed network, and for all distinct unordered vertex

pairs in an undirected network. In the following definitions, let k = 1 for directed networks

and k = 2 for undirected networks.

l =
k

V (V − 1)

∑

u,v∈V

σuv (Average path length (West, 2001))

l
−1

=
k

V (V − 1)

∑

u,v∈V

1

σuv
(Efficiency (Latora and Marchiori, 2001))

dmax = max
u,v∈V

σuv (Diameter (West, 2001))

d90 ≈ argi[P (σuv ≤ i) = 0.9] (Effective diameter (Leskovec et al., 2005))

The distribution of all-pairs shortest path lengths between vertices is only well defined

for (strongly) connected graphs, since σuv = ∞ when there is no path between u and v.

In order to handle disconnected graphs, the average path length distribution is generally

only computed over pairs of vertices that are reachable from each other. The efficiency

measure introduced by Latora and Marchiori (Latora and Marchiori, 2001) is another way

to overcome this problem by considering the inverse of the shortest path length, so that
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when σuv = ∞, then l−1
uv = 0. A third method is to only compute shortest paths between

vertices in the largest (strongly) connected component.

The diameter of a graph, although unambiguously defined in graph theory (Bollobás,

1998; West, 2001), has a slightly different meaning in other disciplines, particularly physics.

For example, in their seminal paper on estimating the ‘diameter’ of the World Wide Web,

Albert et al. (Albert et al., 1999) are referring to the average shortest path length and

not the maximum shortest path length, as is standard in graph theory. In computer

science, Leskovec et al. (Leskovec et al., 2005; Leskovec et al., 2007) and subsequently

Ahn et al. (Ahn et al., 2007) use a smoothed notion of the conventional graph-theoretic

definition of diameter – the 90th percentile of the shortest path length distribution – to es-

timate the length of the ‘almost’ longest shortest path length in a network. The distinction

between these properties is particularly important when considering trends over time, since

it is possible to construct examples where, say, the average path length is increasing while

the diameter or effective diameter is decreasing.1

2.1.3.2 Density

Irrespective of the structure of a graph, it is sometimes useful to quantify the relative

numbers of vertices and edges to get some sense of the ‘crowdedness’ of the network, either at

a global or a local scale. Although density measures are trivial to compute, the ratio of nodes

to edges can be particularly informative of structure of the network. For example, a classic

1As a real world example of such a case, see the early stages of the evolution of the Cyworld
network (Ahn et al., 2007).
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paper by Erdös and Rényishowed that the connectivity properties of random graphs undergo

an abrupt phase change at certain critical densities that can be analytically computed (Erdös

and Rényi, 1959).

Definition 2.1.5. The density of edges in a network G = (V,E) can be quantified in the

following ways. In the following definitions, let N(v) be the set of neighbors of vertex v,

i.e., the set of vertices that are adjacent to vertex u, and let k = 1 for directed networks

and k = 2 for undirected networks.

D =
k|E|

|V |(|V | − 1)
(Density (Bollobás, 1998; West, 2001))

N =
1

|V |
∑

v∈V

|N(v)| (Average degree)

=
D

|V | − 1

CC1 =
1

|V |
∑

v∈V

k|M(v)|
|N(v)|(|N(v)| − 1)

(Clust. coefficient (Watts and Strogatz, 1998))

where M(v) is the set of edges between the neighbors of v:

M(v) = {(i, j) : i, j ∈ N(v) and (i, j) ∈ E}

and CC1 is only computed for vertices with N(v) > 1.

The clustering coefficient measure proposed by Watts and Strogatz (Watts and Strogatz,

1998) is a measure of the local density of edges around a particular vertex. The clustering

coefficient of the whole network is usually expressed as the mean clustering coefficient
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computed over all vertices. Soffer and Vazquez (Soffer and Vázquez, 2005) show that the

clustering coefficient of a vertex, as defined above, is inherently correlated with the degree

of the vertex, since high-degree vertices will have more possible edges between them, and a

generally lower clustering coefficient. They propose an alternative definition that removes

this bias. However, to the best of our knowledge, it has not been widely used.

Finally, a property that has attracted considerable interest in computer science is the

Densification Power Law (DPL), first described in a pair of seminal papers (Leskovec et

al., 2005; Leskovec et al., 2007), examined in a number of subsequent studies (Shi et al.,

2007; Menezes et al., 2009; Latapy and Magnien, 2008; Pallis et al., 2009), and even used

as the basis of a network sampling algorithm (Leskovec and Faloutsos, 2006).

Definition 2.1.6. An evolving network that obeys a Densification Power Law (DPL) con-

tains a number of edges E that, at any point in time, is related to the number of vertices V

in a power function of the form:

E(t) = k · V (t)α (2.2)

where 1 < α < 2 is called the densification exponent.

The DPL is a statement about the relative number of vertices and edges over time.

Note that the area of fitting power-law distributions to the degrees of vertices measured in

a dataset has been well studied (Clauset et al., 2009; Goldstein et al., 2004), but in the case

of the DPL, we are not dealing directly with a statistical distribution, but rather a power
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Figure 4: DPL plot from a patent citation dataset on doubly logarithmic and linear scales,
illustrating the difference between regression assumptions. The black line is a fit of the
Multiplicative DPL equation, and the gray line is a fit of the Additive DPL equation. The
inset shows standardized residuals of both fits against a y = 0 line, revealing errors that are
unlikely to be independent.

function of the number of edges to the number of nodes that is invariant over time. A prac-

tical issue, however, is that there are at least two ways to fit a power function to empirical

data, each of which requires different assumptions about the underlying relationship, and

each of which leads to a different statistical formalization of Definition 2.1.6:

1. Linear regression on log-transformed data. This is the regression method that has

commonly been used in the literature, including in the original definition (Leskovec
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et al., 2005). The DPL function is assumed to have a multiplicative, centered, i.i.d.,

normally distributed error term ǫ (Seber and Lee, 2003), specifically:

E(t) = k · V (t)α · ǫ

2. Nonlinear regression. This method assumes a more common additive error term, and

requires the use of an algorithm like nonlinear least-squares (Ryan, 2008):

E(t) = k · V (t)α + ǫ

Figure 4 illustrates this distinction on a dataset of U.S. patent citations (Hall et al., 2001)

(see (Leskovec et al., 2005) for details on preprocessing). The densification exponent of

α = 1.34 obtained using linear regression is significantly different from the nonlinear regres-

sion fit of α = 1.81, with the magnitude of the standardized residuals shown in the inset

(i.e., differences between the data and fitted curve, centered around the mean difference and

divided by the standard deviation in differences). Later in this chapter, we show that each

form of DPL exhibits different sensitivities to the same missing data, making it important

to qualify the regression technique (and thus statistical noise model) used.

2.1.3.3 Spectral properties

Spectral graph theory uses the algebraic properties of a graph’s adjacency matrix, or

transformations of it, to reveal an astonishing amount of information about the structure

of the graph (Biggs, 1993; Chung, 1997). A number of diverse questions can be answered
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by examining either the set of eigenvalues of the graph’s (possibly transformed) adjacency

matrix, or specific eigenvectors associated with them. For example, the eigenvector corre-

sponding to the largest eigenvalue is the basis of a number of vertex importance ranking

algorithms (Bonacich and Lloyd, 2001; Perra and Fortunato, 2008). The popular PageRank

algorithm can be seen as a variant of this method that uses a transformation of the adja-

cency matrix (Brin and Page, 1998). We briefly describe some interesting spectral graph

properties, focusing on eigenvalues as a global characterization of the graph rather than on

eigenvectors as characterizations of individuals vertices.

Definition 2.1.7. The spectrum of a matrix is the set of its eigenvalues. The spectral

properties of a graph G = (V,E) depend upon which matrix representation is chosen for it.

Starting with the basic adjacency matrix of a graph, the combinatorial Laplacian matrix is

defined as follows, where N(v) is the degree of vertex v ∈ V :

Luv =































N(v) : u = v

−1 : (u, v) ∈ E

0 : otherwise

We denote λ1 ≤ ... ≤ λV as the ordered set of eigenvalues of an adjacency matrix A, where

V is the number of vertices in the graph and λV is the principal eigenvalue. Similarly, the

spectrum of the Laplacian matrix is denoted µ1 ≤ ... ≤ µV .

The following are some properties of the spectra of each matrix representation of a

graph.



44

1. (Adjacency) The diameter of the graph dmax is less than the number of distinct eigen-

values (West, 2001).

2. (Adjacency) For processes spreading on graphs, such as viruses in computer networks,

the epidemic threshold is a critical rate of infection beyond which a virus can become

an epidemic. The epidemic threshold can be estimated by the quantity 1/λV (Wang

et al., 2003).

3. (Adjacency) In a scale-free graph, the maximum degree grows as
√
V , so the principal

eigenvalue can be expected to grow as λV ∼ V 1/4 (Farkas et al., 2001).

4. (Laplacian) The number of zero eigenvalues is equal to the number of connected

components.

5. (Laplacian) The largest eigenvalue is bounded by twice the maximum degree (Almen-

dral and Dı́az-Guilera, 2007):

µV ≤ 2Nmax

6. (Laplacian) The diameter of an undirected graph dmax is bounded by the following

expression involving the largest and second-smallest eigenvalue µ2 (Chung et al., 1994):

dmax ≤
⌊

cosh−1(V − 1)

cosh−1(µV +µ2

µV −µ2
)

⌋

+ 1,

Spectral properties have rarely been use to characterize the time evolution of networks,

perhaps because interpreting temporal trends in eigenvalues is less intuitive than inter-
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preting trends in classical graph theoretic properties like density and diameter. Plotting

the spectrum of a graph can be used as an effective tool to summarize the structure of

the graph (Banerjee and Jost, 2009), but robust and intuitive methods for tracking this

summary over time are an open problem.

2.2 Dynamic properties of real networks

In the previous section, we outlined network data classes, aggregation methods, and

graph measures used to characterize network structure. Using this framework, we now

survey the literature to summarize commonly reported temporal properties of real dynamic

network datasets. We also aim to classify the experimental methodology of each study into

the conceptual framework described in the previous section, in an attempt to characterize

what the de-facto experimental procedure is. Reported empirical results are categorized

by graph-theoretic properties and the type of network dataset being studied, and then

presented in increasing chronological order of year of publication. Section 2.2.1 describes the

literature in terms of global and local density measures in the graph, whereas Section 2.2.2

describes distance measurements in terms of the distribution of shortest paths over time.

Due to the ordering of this section, the networks of each study are described in most detail

in Section 2.2.1.

2.2.1 Global and local density

We first examine three measures related to the global and local density of a network:

the conventional definition of density D (the ratio of the number of edges to the maximum

possible number of edges), the average degree N , and the average clustering coefficient CC1.
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Of these, CC1 measures the local density of edges centered at each vertex in the network,

on average, as specified in Definition 2.1.5.

2.2.1.1 Bibliographic networks

Barabási et al. (Barabási et al., 2002) analyzed the time evolution of two co-authorship

datasets consisting of publications in Neuroscience and Mathematics. They found that the

average degree N in both datasets are monotonically increasing over time, although the

rate of increase is faster in Neuroscience than in Mathematics. They speculate that this is

because of the differences in collaboration culture between the fields. The average clustering

coefficient is also decreasing in both datasets, although this could possibly be explained by

the degree-correlation bias in the CC measure (Soffer and Vázquez, 2005).

Elmacioglu and Lee (Elmacioglu and Lee, 2005) presented an analysis of co-authorship

in the database research community by aggregating co-authorship information from 100

“hand-picked” publication venues listed in the DBLP database (Ley, 2002). We obtained

two trends related to density from their analysis. The first is the average degree over time

considering the DBLP database as a dynamic network, expressed as the average number

of collaborators per author each year. This trend is shown to be increasing, and is a lower

bound on the trend in a growing version of the same dataset. The second trend in the

paper is a slow, linear increase in the clustering coefficient over time computed in the

growing (cumulative) version of the dataset. The apparent disagreement with the trend

found by Barabási et al. in other co-authorship datasets could possibly be explained by

the fact that Elmacioglu and Lee only compute the clustering coefficient for vertices in the
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largest connected component of the network, whereas Barabási et al. consider all vertices

in the network. At the end of the observation period, less than 60% of all vertices in

Elmacioglu and Lee’s dataset are included in the giant component.

Menezes et al. (Menezes et al., 2009) analyzed the structure and evolution of research

collaborations in computer science from co-authorship data. They manually selected aca-

demic institutions from three geographical regions – 16 in the United States and Canada

(Ca-US), 6 in Europe (Fr-Sw-UK), and 8 in Brazil (Br) – and extracted names of faculty

from departmental homepages, and co-authorship data for those faculty from DBLP. In the

Brazil and Europe networks, the clustering coefficient appears to be decreasing at a uniform

rate. However, the North American network appears to be largely stable, subject to regular

fluctuations. This is in contrast to the fraction of vertices in the giant component, where

both Brazil and Europe exhibit sharp increases.

2.2.1.2 Online social networks

Holme et al. (Holme et al., 2004) obtained an almost exhaustive history of user inter-

actions in Pussokram, an online dating social network popular in Sweden. This network

is somewhat unusual because it contains full temporal information about multiple modes

of user interactions. Users can, for example, list each other as ‘friends’, or write private

or public messages to each other, or ‘flirt’ with one another, and each type of interaction

generates a different network. We report the authors’ results on the aggregate network of

all interactions and on friendship links alone, since the other trends are very similar. All

interaction types yield networks that exhibit an initially increasing average degree, but in
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all cases, the trend appears to be quickly converging to a constant. In the case of friendship

links, the average degree is approximately constant for more than 400 out of 500 days in

the observation period. The authors note that this appears to agree with sociological con-

straints, such as empirical findings that maximum social network sizes in humans appear

to be bounded (Hill and Dunbar, 2003).

Local density in the Pussokram network also exhibits some interesting trends. The au-

thors compute both directed and undirected clustering coefficient in the network over time,

and show that the network of all interactions exhibits a decreasing clustering coefficient,

similar to earlier findings in bibliographic networks by Barabási et al. (Barabási et al.,

2002). The network consisting only of friendship links, however, displays a non-monotonic

trend, and it is hard to draw any conclusions about long-term behavior. The authors note

that since Pussokram is primarily a dating site, conventional social norms for introducing

one’s friends to each other, and thus increasing local density, might not apply.

Kumar et al. (Kumar et al., 2006) obtained complete temporal information on the

evolution of two online social networks - Yahoo 360 and Flickr, both of which are treated

as growing networks. A key finding, which can perhaps be generalized to other online

social networks where complete temporal information is available, is that there appear to

be multiple regimes of growth. The authors note that these stages correspond to an “initial

euphoria” peak as early adopters sign up for the service, a subsequent decline of the initial

enthusiasm, followed by steady “organic growth”. Both networks exhibit these phenomena
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in terms of the average degree of nodes, with the long-term trend appearing to be an

increasing one.

Beyene et al. (Beyene et al., 2008) examine the structure of a trust network, built from

binary feedback ratings on the online auction site eBay. These ratings are assigned to users

by other users on the completion of a transaction, and can be either positive or negative,

although they are generally found to be positive. Beyene et al. show that the average degree

in this network increases almost linearly with time, from 1999 to 2005. Note that the data

was collected by crawling user profiles on the eBay site, which brings up issues of incomplete

data, and consequently, the missing past.

Hu et al. (Hu and Wang, 2009) analyze the temporal evolution of Wealink, an online

social network popular in China, as a dynamic network. Perhaps the most interesting feature

of their dataset is the S-shaped trend, resembling a logistic function, of both the number

of vertices and edges over time. Since the dataset is an exhaustive history of the evolution

of the network, the authors speculate that the sharp increase in the number of vertices and

edges corresponds to a sudden burst of popularity, when the membership of the network

grew from under 10,000 vertices to over 200,000 in less than 5 months out of a 27 month

history, similar to earlier findings by Kumar et al. (Kumar et al., 2006). Both the global

density D and the average clustering coefficient CC1 appear to decrease towards a constant

once the growth of the network has stabilized. A fit to the logistic function suggests that

the number of vertices has an asymptotic limit of V ∼ 224, 000 and E ∼ 272, 100.
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2.2.1.3 Subsets of the World Wide Web

Buriol et al. (Buriol et al., 2006) analyzed the evolution of the structure of hyperlinks

between articles in Wikipedia, an online, publicly-editable encyclopedia. Using snapshots of

the link structure that model Wikipedia as a dynamic network, they find that the average

out-degree Nout is increasing at a constant rate of approximately one new out-link every 100

days. The average clustering coefficient remains approximately constant in the last year of

network evolution, after periods of non-monotonicity. This is somewhat surprising, since

it implies that the local density around vertices remains constant even though the average

number of neighbors increases.

Shi et al. (Shi et al., 2007) analyzed four temporal snapshots of a partial crawl of

blogspace released as part of the TREC Blog-Track 2006 dataset. They report that that

the average degree N of the network increases from 1.5 to 2.657 over a period of 40 days.

Similarly, CC1 increases monotonically from 0.034 to 0.052 over the same period.

Latapy and Magnien (Latapy and Magnien, 2008) analyze a crawl of the .uk WWW

domain, where each hyperlink is labeled with the time that it is discovered. Note that

the motivation for the study was not to study the evolution of the network, but to deter-

mine how large a network sample should be in order for network properties to stabilize.

In order to achieve this, the authors add edges sequentially to a network in increasing or-

der of the timestamp of the edge. Thus, their methodology essentially builds a growing

network, allowing us to compare their results, at least qualitatively, to studies that ex-

plicitly analyze network properties over time. Although the timestamp on the hyperlinks
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in the WWW dataset correspond to the link’s discovery time and not the link’s creation

time, we include the datasets in this survey since the same methodology has been used in

other papers (Leskovec et al., 2007). The average degree grows quickly as a function of the

number of nodes added to the network, but the density appears to decrease smoothly and

the clustering coefficient is extremely non-monotonic. The Web dataset also seems to show

sharp discontinuities in time, perhaps implying problems in the underlying crawling process.

Thus, the trends in this particular dataset should not be given too much importance.

2.2.1.4 Internet Routers and Autonomous Systems

Dhamdhere and Dovrolis (Dhamdhere and Dovrolis, 2008) analyze the structure and evo-

lution of a specific type of link between Autonomous Systems, namely ‘customer-provider’

(CP) or ‘paid transit’ links instead of all links. They perform extensive filtering and smooth-

ing on the dataset, and show that the limited nature of AS datasets nonetheless allows

reasonable estimation of the topology of CP links, but not all links. The average degree N

over CP links is shown to be steadily increasing over time.

2.2.1.5 Dynamic Interaction Networks

Kossinets and Watts (Kossinets and Watts, 2006) analyzed a dynamic network of e-mail

communications between university students, staff, and faculty. Since e-mail constitutes

a dynamic interaction network, they used decay windows of various lengths in order to
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smooth network structure. Specifically, each edge between vertices i and j is weighted at

time t according to the following function1:

wij =

√
mijmji

τ

where τ is the length of a chosen smoothing time window, and mij is the number of messages

sent from i to j in the period (t − τ, t]. For vertices i and j, if wij > 0 at time t, then the

edge (i, j) exists in the network at that time. This introduces a form of edge decay over

time, since e-mails allow the observation of the creation of links, but not of their dissolution.

It also implements the intuitive idea that an e-mail should not constitute a social tie in a

network indefinitely.

Using this edge decay scheme and window sizes of τ = 30, 60, 90 days, the authors find

that the average degree N is approximately constant during the semester, decreasing sharply

during the semester break and in summer. Similarly, the average clustering coefficient CC

appears to be largely in equilibrium during the semesters, its trend only increasing slightly

during summer. The drops in average degree during summer, for example, can be explained

by students not being on campus. Although the authors were only able to obtain data for

one academic year, their results raise a number of interesting points: namely, that a single,

global smoothing parameter appears to show that the network is largely in equilibrium

1Found in the supporting online material for (Kossinets and Watts, 2006), available at www.

sciencemag.org.
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during the semesters. Whether this phenomenon could be observed in other networks using

a similar smoothing mechanism is an open question.

Pallis et al. (Pallis et al., 2009) analyze the structure of dynamic vehicular ad-hoc

networks, i.e., temporary wireless networks created when specially-equipped vehicles on

open roads are within transmission range of each other. Their study is notable because it

does not use actual interaction data, but rather the results of a large-scale realistic traffic

simulation (Raney et al., 2002; Naumov et al., 2006). The authors simulate traffic in the

center of the city of Zurich, Switzerland for 3 hours in the morning rush period, and do not

use any form of edge decay or sliding window, as in Kossinets and Watts (Kossinets and

Watts, 2006). Since the time evolution of the network reflects instantaneous traffic patterns,

it is not surprising that the average degree increases gradually as traffic starts to build, and

then falls off. The clustering coefficient, on the other hand, remains constant throughout

the simulation period, making this an example of a graph where local and global density

appear to uncorrelated.

Pallis et al. (Pallis et al., 2009) also illustrate a somewhat unusual usage of the DPL

relationship in their analysis of communication links in dynamic vehicular ad-hoc networks.

We have mentioned that the authors do not use any form of edge decay or smoothing, result-

ing in an instantaneous picture of communication links at each timestep in the evolution of

the network. The authors fit the Multiplicative DPL to the model and find a densification

exponent of α = 1.77, although the interpretation of this value is difficult.
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Year Reference Network Type Category N D CC

2002 (Barabási et al., 2002) Mathematics Biblio. growing increasing - decreasing
Neuroscience Biblio. growing increasing - decreasing

2004 (Holme et al., 2004) Pussokram: All Online growing increasinga - decreasing
Pussokram: Friends Online growing constant - b

2004 (Park et al., 2004) RouteViews AS dynamic increasingb - increasing
Extended AS dynamic - - -

2005 (Elmacioglu and Lee, 2005) DBLP-DB Biblio. growing increasingc - increasingb

2006 (Kossinets and Watts, 2006) University Email interaction periodicd - periodicd

2006 (Buriol et al., 2006) Wikipedia WWW dynamic increasing - constantb

2006 (Kumar et al., 2006) Flickr Online growing increasingb - -
Yahoo 360 Online growing increasingb - -

2007 (Shi et al., 2007) TREC WWW dynamic increasing - increasing
2008 (Dhamdhere and Dovrolis, 2008) AS-CP AS dynamic increasingb - -
2008 (Latapy and Magnien, 2008) INET Router growing increasing b increasinga,b

eDonkey P2P growing increasing decreasinga,b decreasingb

Metrosec Router growing constantb decreasinga,b decreasinga,b

2008 (Beyene et al., 2008) eBay Online growing increasing - -
2009 (Menezes et al., 2009) Brazil Biblio. growing - - decreasing

Ca-US Biblio. growing - - decreasing
Fr-Sw-UK Biblio. growing - - constantb

2009 (Hu and Wang, 2009) Wealink Online dynamic - constantb constantb

2009 (Pallis et al., 2009) Vehicle traffic Ad-hoc interaction b - constant
a Trend suggests convergence to asymptote.
b Trend exhibits non-monotonic behavior.
c Trend measured using fully dynamic network aggregation.
d Uses smoothing, sliding windows, or edge decay with fully dynamic network aggregation.

TABLE II: OVERVIEW OF LOCAL AND GLOBAL DENSITY MEASUREMENTS. NOTE THAT THESE ARE
QUALITATIVE ASSESSMENTS BASED ON GRAPHICAL DATA PRESENTED IN EACH PAPER.
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Year Reference Network Type Category l dmax d90
2002 (Barabási et al., 2002) Mathematics Biblio. growing decreasinga - -

Neuroscience Biblio. growing decreasinga - -
2003 (Nascimento et al., 2003) SIGMOD Biblio. growing b constantb -
2004 (Holme et al., 2004) Pussokram: All Online growing decreasinga - -

Pussokram: Friends Online growing increasingb - -
2004 (Park et al., 2004) RouteViews AS dynamic decreasing - -

Extended AS dynamic b - -
2005 (Elmacioglu and Lee, 2005) DBLP-DB Biblio. growing constantb - -
2006 (Kumar et al., 2006) Flickr Online growing constantb - increasingb

Yahoo 360 Online growing decreasingb - decreasingb

2006 (Kossinets and Watts, 2006) University Email interaction periodicd - -
2007 (Ahn et al., 2007) Cyworld Online dynamic decreasingb - decreasingb

2008 (Dhamdhere and Dovrolis, 2008) AS-CP AS dynamic constantb - -
2008 (Latapy and Magnien, 2008) INET Router growing decreasinga decreasinga -

eDonkey P2P growing decreasinga decreasing -
Metrosec Router growing constant constant -

2009 (Menezes et al., 2009) Brazil Biblio. growing b - -
Ca-US Biblio. growing decreasing - -
Fr-Sw-UK Biblio. growing b - -

2009 (Hu and Wang, 2009) Wealink Online dynamic decreasingab constantb -
2009 (Pallis et al., 2009) Vehicle traffic Ad-hoc interaction noisy - -

a Trend suggests convergence to asymptote.
b Trend exhibits non-monotonic behavior.
c Trend measured using fully dynamic network aggregation.
d Uses smoothing, sliding windows, or edge decay with fully dynamic network aggregation.

TABLE III: OVERVIEW OF AVERAGE AND MAXIMUM DISTANCE MEASUREMENTS. NOTE THAT THESE
ARE QUALITATIVE ASSESSMENTS BASED ON GRAPHICAL DATA PRESENTED IN EACH PAPER.
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Year Reference Network Category Type Time span Data Miss. past

2002 (Barabási et al., 2002) Mathematics Biblio. growing 1991-1998 8 yes
Neuroscience Biblio. growing 1991-1998 8 yes

2003 (Nascimento et al., 2003) SIGMOD Biblio. growing 1975-2002 28 yes
2004 (Holme et al., 2004) Pussokram Online growing 512 days large yes
2004 (Park et al., 2004) RouteViews AS dynamic 1997-2002 large yes

Extended AS dynamic ∼7 weeks 9 yes
2005 (Elmacioglu and Lee, 2005) DBLP-DB Biblio. growing 1968-2003 36 yes
2005 (Leskovec et al., 2005) arXiv Biblio. growing 1993-2003 124 yes

Patents Citation growing 1975-1999 25 yes
AS AS dynamic 1997-2000 735 yes
Affiliation Biblio. growing 1992-2002 10 yes

2006 (Kossinets and Watts, 2006) University Email interaction ∼1 year large yes
2006 (Buriol et al., 2006) Wikipedia Web dynamic 2002-2006 17 yes
2006 (Kumar et al., 2006) Flickr Online growing 100 weeks 100 no

Yahoo 360 Online growing 40 weeks 40 no
2007 (Ahn et al., 2007) Cyworld Online dynamic 2002-2006 8 yes
2007 (Shi et al., 2007) TREC Blogs growing 40 days 4 yes
2007 (Leskovec et al., 2007) Email Email growing 18 months 18 yes

IMDB Actors-Movies General growing 1890-2004 114 no
2008 (Latapy and Magnien, 2008) INET Router growing 16 months large yes

eDonkey P2P growing 47 hours large no
Metrosec Router growing 8 days large yes

2008 (Dhamdhere and Dovrolis, 2008) AS-CP AS dynamic 1998-2007 40 yes
2008 (Huang et al., 2008) CiteSeer Biblio. growing 1980-2005 25 yes
2008 (Beyene et al., 2008) eBay Online growing 1999-2005 7 yes
2009 (Menezes et al., 2009) Brazil Biblio. growing 1994-2006 13 yes

Ca-US Biblio. growing 1994-2006 13 yes
Fr-Sw-UK Biblio. growing 1994-2006 13 yes

2009 (Hu and Wang, 2009) Wealink Online dynamic 2005-2007 27 no
2009 (Dong et al., 2009) China Airport dynamic 1983-2006 3 (?)
2009 (Pallis et al., 2009) Vehicle traffic Ad-hoc interaction 3 hours large no

TABLE IV: AN OVERVIEW OF THE CHARACTERISTICS OF EVOLVING NETWORK DATASETS.
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2.2.2 Connectivity

2.2.2.1 Bibliographic networks

Barabási et al. (Barabási et al., 2002) were among the first to find a decreasing average

shortest path length l in a growing network, which does not agree with network growth

models like Preferential Attachment (Newman, 2001a). For both the Mathematics and

Neuroscience datasets that they examine, l is decreasing and apparently converging to

an asymptote. The authors note that a longer observation interval might indicate that l

approaches a stationary value, but the relative novelty of co-authorship datasets at the time

of publication resulted in just 8 data points, with each representing an additional year of

cumulative co-authorships. Note that although the authors refer to ‘diameter’, the only

quantity studied is the average shortest path length l.

Nascimento et al. (Nascimento et al., 2003) analyzed the co-authorship graph of the

SIGMOD conference as a growing network. The average path length in the largest connected

component in the network varies considerably over the years, but eventually settles down

into what appears to be a decreasing trend. We have not listed any trend in Table Table III

because of the extremely short time period that any trend is visible at all. The authors note

that computing path lengths within the largest component only has its caveats: until 1980,

only 16 authors were in the largest connected component, out of the 1,683 that eventually

appear. The trend is l is therefore predictably noisy. The authors also report that dmax in

the network has been constant at a value of 15 between 1996 and 2002.
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Elmacioglu and Lee (Elmacioglu and Lee, 2005) analyzed the growing network of pub-

lications in the database research community, constructed from a set of manually selected

publication venues reported to the DBLP database. They report the value of the average

shortest path length l over time, computed over all reachable pairs of vertices in the net-

work. After an initial increasing burst, the trend in l appears to stabilize to a constant value

around 6 from approximately 1989 to 2003. While it is certainly possible that database re-

search was particularly energized between 1973 and 1983, resulting in an infusion of new

authors and sharply increasing l, it is also possible that this spike is an artifact caused

by missing past issues, or known limitations in the indexing process of DBLP for early

data (Ley, 2002). However, the fact that l appears to stabilize for a number of years would

suggest that the network has reached an equilibrium.

Menezes et al. (Menezes et al., 2009) analyzed three co-authorship networks constructed

from faculty publications at manually selected universities in North American, Europe, and

Brazil. The average shortest path length l in the North American network displays a

relatively uniform decreasing trend, but both the Brazilian and European networks exhibit

sharp increases by doubling between 1998 and 2001. Following these sharp increases, the

Brazilian network appears to settle into a decreasing trend, whereas the European network

continues increasing. It should be noted that in the Brazilian research network, the doubling

of l is correlated with a sharp increase in the fraction of nodes in the giant component.
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2.2.2.2 Online social networks

In their analysis of the Pussokram online dating social network, Holme et al. (Holme

et al., 2004) find different trends for networks built from different types of interactions.

Note that although the authors have complete history of the network, registered users of

a different service had their accounts “automatically transferred to pussokram.com” on its

inception (Holme et al., 2004), which implies that this dataset also has a version of the

missing past issue. The authors report different trends in the average shortest path length

l, computed only within the largest giant component as opposed to between all pairs of

reachable nodes, depending on the type of interaction used to build the network. The

aggregate network built from all possible user interactions, for example, shows a decreasing

trend in l, appearing to converge to a constant, but the network built only from friendship

links displays an increasing trend after a very brief period of initial decrease. One possibility

is that each type of user interaction on the social network is governed by a different process,

which results in different trends in each network, but it is also possible that the differences

are caused by disparities in the amount of data on each type of interaction.

Kumar et al. (Kumar et al., 2006) analyzed social networks of the Yahoo 360 and Flickr

services as growing networks. Of these, the Flickr network is somewhat unusual in terms

of both the l and d90 measures. In the “organic growth” phase, it is difficult to discern a

long-term trend in either measure from graphical data. Although the authors state that

both measures decrease over time, there appears to be a slight, monotonic increase in

both measures for approximately the last 30 weeks out of 100. The Yahoo 360 network
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also exhibits noisy trends, although the long-term trend in both l and d90 appear to be

decreasing. Both these networks are exception because complete temporal information is

available for every network-altering activity. They also illustrate the problems associated

with characterizing the properties of real networks as simple, monotonic trends.

Ahn et al. (Ahn et al., 2007) present an analysis of the evolution of friendship links

in Cyworld, an online social network popular in South Korea. Although they claim to

have obtained the complete topology of the network directly from the service provider, the

amount of temporal information is limited to about 42% of the data. Thus, the missing

past issue is a consideration in the temporal analysis of this dataset. The authors find that

the average shortest path length l increases almost linearly for the first three and a half

years of data, but then gradually starts to drop. The effective diameter d90, on the other

hand, stays approximately constant during the early period, before dropping off sharply and

almost converging to the l trend. Note that the drop in both l and d90, and particularly

the reversal of the trend in l, coincides with a sharp increase in the number of nodes in the

network, which could indicate a change in the evolution dynamics of the network caused

by perhaps some sort of external event or marketing effort. In either case, it reinforces the

need to consider the underlying processes reflected in the dataset.

Hu et al. (Hu and Wang, 2009) note that a complete temporal history of the Wealink

online social network exhibits non-monotonic behavior in both the average shortest path

length l as well as the diameter d, i.e., the maximum shortest path length. However, the

network underwent a rapid and extremely pronounced burst of growth, after which network
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properties seem to stabilize. The long-term trend in l appears to be slowly decreasing,

whereas the diameter d stays constant. As Leskovec et al. (Leskovec et al., 2005) point

out, the diameter is extremely sensitive to outlier structures, so the effective diameter d90

or ‘almost’ longest path might follow a different trend.

2.2.2.3 Internet Routers and Autonomous Systems

In their analysis of the evolution of CP links in Autonomous Systems, Dhamdhere and

Dovrolis (Dhamdhere and Dovrolis, 2008) show that the average shortest path length l has

remained approximately constant over the last 9 years.

Dhamdhere and Dovrolis (Dhamdhere and Dovrolis, 2008) analyze the structure and evo-

lution of a specific type of link between Autonomous Systems, namely ‘customer-provider’

(CP) or ‘paid transit’ links instead of all links. They perform extensive filtering and smooth-

ing on the dataset, and show that the limited nature of AS datasets nonetheless allows

reasonable estimation of the topology of CP links, but not all links. The average degree N

over CP links is shown to be steadily increasing over time.

2.2.2.4 Dynamic Interaction Networks

Kossinets and Watts (Kossinets and Watts, 2006) analyzed a university’s e-mail records

for one academic year as a smoothed dynamic interaction network, which we have previously

described in Section 2.2.1.5. The authors report two interesting findings. The first is

that with smoothing windows of 60 and 90 days, the average shortest path length l stays

constant, except after the onset of summer, when it rises. This implies that the network is in

equilibrium until the summer, when presumably a large fraction of the student population
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leaves campus and uses e-mail less frequently. The second finding of interest is that for the

shortest smoothing window of 30 days, intended to capture fast-changing dynamics, there

is a strong correlation between the fraction of vertices in the largest component and the

average shortest path length l with the largest component. The first phenomenon can again

be explained by its occurrence during semester breaks, but the correlation between l and

the size of the giant component raises the question of the underlying process responsible for

the increase or decrease in l in other studies that compute l within the largest component

only.

2.2.3 Summary

In conclusion, empirical evidence seems to suggest the following common trends in real

networks, as measured using the growing network methodology:

1. The average shortest path length is decreasing over time, often appearing to converge

to a fixed value.

2. The effective diameter decreases over time.

3. The average degree grows over time, apparently without a bound.

In the next two sections, we investigate how sensitive these trends might be to various kinds

of sampling error. The next section deals with citation-type networks, and the subsequent

section with interaction-type networks.
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2.3 Sensitivity of measured trends in citation networks

Recall that citation networks grow over time with the addition of nodes and edges, and

that each individual edge can only appear once in the timestream, to represent true growth

in the underlying system. When the growing network method is used to aggregate obser-

vations of a citation network, an implicit assumption is that every aggregated observation

is representative of the underlying system at that point in time, with respect to a measure

M , i.e., that the magnitude of change in the underlying system from time t1 to time t2 is

proportionally represented in a change in measure M from t1 to t2, and vice versa.

There is, however, a condition under which this assumption does not hold: when the

dataset does not contain a full temporal history of the underlying process. This is called a

missing past, and a version of it has been briefly described before in (Barabási et al., 2002)

and (Leskovec et al., 2005). Assume that a physical system is continuously in a state of flux,

but that the observations in a citation network dataset of it necessarily start at an arbitrary

time t0 > 0. Furthermore, assume that due to limitations in the observation process, the

partial picture we have of the underlying system at time t0, with respect to measure M , is

incomplete. Since individual edges are only observed once in a citation network’s lifetime,

we will never discover the existence of edges that occurred before time t0.

However, the same is generally not true for discovering vertices that existed before time

t0. When a new vertex joins the network and links to a vertex that existed before t0, the

older vertex is ‘re-discovered’ and can incorrectly be presumed to be a new vertex. We

call this phenomenon vertex re-dicovery, and it can sometimes be controlled with additional
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metadata. For example, Leskovec et al. (Leskovec et al., 2007) use a patent citation dataset

where the time that each node was created is explicitly recorded, eliminating any vertices

for which they do not have a creation time. However, when this information is not available,

each apparently new vertex can affect a measure M by a significant amount, increasing the

measurement error between the true and observed networks. In some cases, as we will show,

this error can progressively alter trends in some measures over time, suggesting change in

the underlying network in a manner that is not actually happening. This is the first source

of error in dynamic network measurements that we analyze.

In addition to vertex re-discovery affecting graph measurements, a second source of error

is simply the structure of the missing past graph. Even assuming that the measurement

process is perfect and accurately records all vertex and edge additions in the observation

stream, the unobserved temporal history of the network contains a missing past graph

of unknown structure. The true change in the underlying system is determined by the

structure of this missing past graph in relation to the actual observations. Unfortunately,

this missing data graph looks like is difficult to determine, in general, for real datasets.

2.3.1 Assessing sensitivity

The central question of this section is whether the errors introduced by the processes

just mentioned are significant enough to be of concern. Given a dataset and a measure

M , the difficulty of assessing the sensitivity of a temporal trend in M is that we would

require the structure of the missing past network in order to do so. However, a number of

stochastic models of growing networks have already been developed that allow us to generate
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presumably realistic, continuously growing, citation networks (Chakrabarti et al., 2010).

This allows us to conduct a systematic study of the effects of various amounts of missing

past on network measurements by using simulations of these models to generate data. The

diversity of network growth models in the literature means that we can systematically study

a reasonably large class of dynamical systems.

We use a simulation setup where a network growth model is used to generate a synthetic

dynamic network dataset with known properties. We designate this as the ground truth

network. By censoring the initial portion of the synthetic network timeline, we can simulate

both growth and vertex re-discovery without modifying the network growth model. The

independent parameter of the simulation (beyond the parameters of individual network

growth models) is the amount of data to censor, which has a well-defined meaning, and

is the primary phenomenon we are interested in. Ideally, the missing past effect would be

small and the graph properties we study would converge to their true values quickly, or at

least yield qualitatively similar trends over time.

There have been two prior attempts, to the best of our knowledge, to investigate the im-

pact of missing past data on network trends over time when using the growing network aggre-

gation method. This is in contrast to the many studies described in Section 2.2 that simply

use the growing network method under the same conditions. In 2002, Barabási et al. de-

scribed a supplementary experiment assessing the effect of missing past on the average

shortest path length over time, in their seminal paper on co-authorship networks (Barabási

et al., 2002). Our simulation setup in this section is very similar to theirs, but we system-
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atically study several citation network generating processes, graph measures, and amounts

of missing past data.

The second experiment was performed in 2007 by Leskovec et al., who use a subtly

different definition than Barabási et al. of what constitutes the missing past. Namely,

they only consider a limited form of the missing past in citation networks: “citations to

[vertices] that predate our earliest recorded time” (Leskovec et al., 2007, pg.17). Where

Barabási et al. analyzed the effect of missing past using synthetic simulation data, Leskovec

et al. use a real dataset, known to have a missing past with unknown structure, in order

to determine what the impact of the missing past would be. They used the following

experiment to validate that the trend they observed in the effective diameter graph measure

was not an artifact of the observation process (note that t = 0 corresponds to the start of

observations in the quotation below, not to the start of the process as in our notation):

We pick some positive time t0 > 0 and determine what the diameter would

look like as a function of time if this were the beginning of our data. We then

put back in the nodes and edges from before time t0 and study how much the

diameters change. If this change is small – or at least if it does not affect the

qualitative conclusions – then it provides evidence that the missing past is not

influencing the overall result (Leskovec et al., 2007).

We can now illustrate how simulations with synthetic data can shed light on the efficacy

of the test described above. A well-known network generation model is the preferential

attachment, which we describe in more detail subsequently in Section 2.3.2, and which is
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known to generate graphs with a slowly growing diameter (see Section 2.1.3 for definition).

Starting with an initial seed graph of a single vertex, we use the preferential attachment

model to generate a random ‘ground truth’ growing citation network. After an arbitrary

number of timesteps t0, we simulate the start of the observation process. Specifically, the

entire structure of the network prior to t0 is considered to be the missing past and censored,

but additions to its structure are observed and aggregated into a growing graph. We can

then compare the value of some measure M , here the effective diameter, on the full ground

truth network and the truncated, mising past network. This allows us to measure the

impact of different amounts of missing past.

Figure 5 shows the ground truth for the d90 (effective diameter) measure over time for

the true dataset and the measured, missing past network. In this instance, the effect of

the missing past is extremely significant – where the ground truth network shows a slowly

increasing diameter, the missing past network would suggest that the diameter is rapidly

decreasing over time. The inference we make about the change in the structure of the

underlying process is therefore an artifact of the structure of the missing past network and

vertex re-discovery. This essentially reproduces the results of the experiment conducted

by Barabási et al. , using effective diameter as the measure of interest instead of average

shortest path length (Barabási et al., 2002).

We then conducted the experiment described by Leskovec et al. above on the truncated

missing past network, treating it as the observed dataset, and knowing the ground truth

in advance. We chose an arbitrary time greater than t0 and essentially repeated the pro-
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Figure 5: The effective diameter over time in a synthetic preferential attachment network,
the observed trend after an initial portion is censored to simulate the missing past, and the
trend produced by a ‘Post-t0’ validation experiment

cedure of truncating the network before that time. The ‘Post-t0’ validation experiment

used by Leskovec et al. intuitively states that if the trend in the missing past network and

the ‘Post-t0’ are comparable, then the trend in the missing past network and the ground

truth are also comparable. However, we find that the trend resulting from the validation

experiment is essentially identical to the trend in the missing past network, in agreement

with similar observations on real datasets in (Leskovec et al., 2007). However, both trends

are nonetheless artifacts here of the missing past, given that the ground truth has a slowly

increasing d90. The validation experiment described in (Leskovec et al., 2007) therefore

appears to be limited in its ability to discern a spurious trend from a representative one, as

shown in Figure 5.
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We use the same methodology in combination with other network growth models and

graph measures to estimate the impact of various amounts of missing past data (and thus

vertex re-discovery). Figure 5 shows the output of a single random trial for clarity, but in

general, we are interested in the expected trend of a measure M in the presence of missing

past data, over many random trials. In the next subsection, we describe the stochastic

network growth models we will use in our empirical analysis in Section 2.3.3.

2.3.2 Network growth models

A network growth model can be viewed as a probabilistic algorithm that adds nodes

and edges to a graph, driven by random noise. A full review of network growth models is

beyond the scope of this thesis, but we describe a few key models that will be used here. For

a comprehensive survey of network growth models, the reader is referred to (Chakrabarti

and Faloutsos, 2006; Chakrabarti et al., 2010).

Definition 2.3.1. Network growth model. A network growth model accepts a graph G =

(V,E) as input and a vector of parameters Θ, and stochastically produces an output graph

G′ = (V ′, E′), where V ⊆ V ′ and E ⊆ E′.

Growth models are generally applied recursively, i.e., an initial seed graph is given to

the growth model, and the output graph becomes the input graph for the next timestep, for

a fixed number of timesteps. Figure 6 shows graph layouts of three network growth models

for networks of increasing size. The following are three network growth models that we will

consider in this chapter:



70

1. (Dynamic Random Attachment) This is possibly the simplest network growth model,

originally proposed by Callaway et al. (Callaway et al., 2001) to study the properties

of randomly growing graphs relative to classical Erdös-Rényi graphs. The growth

process is as follows: at every timestep, a new vertex is added to the graph, and with

constant probability p, two unconnected vertices are connected with an edge uniformly

at random. The observation stream therefore consists of an isolated vertex at each

timestep with probability (1−p), or an edge and two or three vertices with probability

p. In a variant, we choose an arbitrary pair of vertices for the observation stream

instead of an unconnected pair. In the former version, the missing past simulates

vertex re-discovery; in the latter, both vertex and edge re-discovery. The first version

simulates a citation network, and the latter an interaction network. Finally, since one

new vertex is added at each timestep, and the expected number of edges at time t is

pt, the expected average degree over time is constant at 2p.

2. (Preferential Attachment) The Barabási-Albert preferential attachment (PA) model (Barabási

and Albert, 1999; Barabási et al., 2002) was one of the first random graph models

intended to generate ‘realistic’ graphs. It is based on the basic principle that a vertex

that has just joined the network will randomly connect to an existing vertex with a

probability directly proportional to the degree of the vertex being connected to. While

most vertices will end up having a low degree, vertices that initially have a high de-

gree will continue to rapidly increase in degree, as a mathematical embodiment of the

‘rich-get-richer’ adage. Remarkably, this simple game generates networks with many
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of the graph-theoretic properties observed in real networks; for example, a skewed

degree distribution of vertices, and a small average shortest path length (Bollobás

et al., 2001; Newman, 2003; Boccaletti et al., 2006). Furthermore, the PA model is

expected to generate graphs with a slowly growing diameter, i.e., either as Θ(log(V ))

or O(log(log(V ))) depending on the parameters (Bollobás and Riordan, 2004). The

version of the PA model we consider here was presented as a model of bibliographic

co-authorship networks by Barabási et al. (Barabási et al., 2002). Starting with an

initial seed graph G0 and two integer parameters a > 0 and b > 0, the following

describes the simplified PA growth model applied to the graph at each timestep t:

(a) A new node u is added to the graph and connected to a existing vertices, where

the probability of linking to vertex v is defined as

P (u, v) =
N(v)

∑

i∈V N(i)

where N(v) is the degree of vertex v.

(b) b links are created between existing vertices in the graph, where the probability

of a link between vertices i and j is defined as

P (i, j) =
N(i)N(j)

∑

s,m∈V,s 6=mN(s)N(m)
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As a variant, in the second step of the algorithm above, if we do not distinguish

between already unconnected and connected vertex pairs, the missing past effectively

simulates edge as well as vertex re-discovery. Otherwise, only vertex re-discovery is

simulated. Note that the version of the algorithm given above would have an expected

diameter that grows as Θ(log(V )) where V is the number of vertices. At each timestep,

one new vertex and (a+ b) new edges are added to the graph, so the expected average

degree over time is constant at 2(a + b). If resampling of edges is allowed in the

second step, then at most (a + b) new edges are added at each timestep, and the

average degree converges from below to 2(a + b). Since the average degree converges

to a constant, the Densification Power Law is not applicable.

3. (Forest Fire) The Forest Fire model was proposed by Leskovec et al. (Leskovec et

al., 2005) as an alternative to network growth models like Preferential Attachment,

which generate graphs with a slowly increasing diameter and constant average degree.

Instead, Leskovec et al. used the growing network methodology and found that the

networks they analyzed showed a rapidly decreasing diameter over time, and super-

linearly increasing average degree, which would invalidate Preferential Attachment

as a dynamical model for growing networks. They proposed the Forest Fire model

to generate graphs with a decreasing diameter and superlinearly increasing average

degree.

Although determining the expected properties of the Forest Fire model appears to be

analytically intractable, it is able to generate graphs with the properties mentioned
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above for specific parameter values described in (Leskovec et al., 2007). Algorithmi-

cally, it can be seen as a form of copying model (Kumar et al., 2000), where new nodes

pick a set of ambassadors and then probabilistically link to their neighborhoods. Given

two probability parameters p and r, the graph growth algorithm at each timestep adds

a new vertex u as follows (Leskovec et al., 2007):

(a) u chooses an ambassador node v and links to it.

(b) Let x and y be two geometrically distributed random numbers with parameters

(1− p) and (1− rp). u randomly links to (x− 1) in-link vertices of v and (y− 1)

out-link vertices of v, excluding any that have already been visited in the current

iteration.1

(c) The second step repeats at all nodes that have just been linked to, until the

process dies out.

Consider the output of iterating any of the network growth models above. Recall that

we start with an initial seed graph, possibly empty, which is designated G0 = (V0, E0). At

each timestep, the network growth model generates an observation graph G′ = (V ′, E′),

which is added to the input graph to produce the output. Note that V ′ and E′ can have

elements in common with the input graph, but are not necessarily strict supersets or subsets

of it.

1The -1 constants on x and y are not mentioned in the description of the algorithm, but are
critical for reproducing the results in (Leskovec et al., 2005; Leskovec et al., 2007).
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Figure 6: Examples of the output of network growth models for graphs of 10, 15, and 20
nodes: forest-fire (top row), preferential attachment (middle), random attachment (bot-
tom).

Let Grow be such a network growth model:

Grow : G×Θ→ G′

where G is the input graph, Θ is set of model parameters, and G′ is the output observation

graph describing changes made to the input graph. Let C be the number of initial timesteps

to censor to simulate the effect of re-discovery. Starting with timestep 0 and a seed graph
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G, we iterate the network growth model in the following manner to generate the ground

truth network:

O1 = Grow(G,Θ) G1 = G ∪O1

O2 = Grow(G1,Θ) G2 = G1 ∪O2

...

This yields the underlying (ground-truth) network:

〈G〉 = 〈G,G1, ...〉

We then censor the first C timesteps to generate the observed, aggregated network 〈G+〉

(see Definition 2.1.2).

〈G+〉 = 〈OC , OC ∪OC+1, OC ∪OC+1 ∪OC+2, ...〉

Depending on the model, the occurrence of some vertices in Ot, t ≥ C will be caused

by re-discovering a pre-existing vertex. This could happen, for example, when a new edge

connects to a vertex that exists in the censored part of the network. In some network models,

existing edges can be re-activated, so there is also the possibility than an edge in some Ot

for t ≥ C is a re-activation of an edge in the censored part of the network. This describes a
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very common ‘missing-past’ scenario in network data collection, and it is important to keep

in mind that the properties of interest are those of the underlying network 〈G〉.

2.3.3 Empirical results

The experimental methodology for simulating the missing past is simple: iterate a net-

work growth model for C timesteps to generate a ground truth network, and then ‘fork’

its evolution into a secondary, “missing past” network that only receives updates to the

ground truth network from timestep C onwards.1 For example, if the ground truth network

receives edge (u, v) at timestep C + 1, the missing past network at the same timestep con-

tains only the edge (u, v). The larger the value of C, the larger the missing past network,

and depending on the graph model, the higher the prevalence of the re-discovery process

in uncovering censored vertices. We might intuitively expect that for small values of C,

any difference between the properties of the ground truth and missing past network would

converge to the same value very quickly. By varying C, we can test this assumption with

any network growth model.

For each of the three network growth models described earlier, we started with the

simplest seed graph permissible by the model, generally a single isolated vertex. The growth

model was iterated for a total of 1,000 timesteps, with the missing past size ranging from

50 to 250 timesteps in increments of 50 timesteps. Note that this represents a very small

1In Unix-like operating systems, the fork() system call creates a second concurrent copy of a
process. The difference is that unlike a Unix process, our ‘missing past’ network does not inherit
any data from the original ground truth network.
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amount of missing past data. In all three models, this equates to a missing past graph

of just 50 vertices. Various graph theoretic properties were measured on both the missing

past and ground truth networks every 10 timesteps. All properties were averaged over 500

random trials. Shortest paths were computed exhaustively between all reachable vertex

pairs using the igraph network library. We present results in the following subsections for

the following model configurations:

1. Random attachment with edge creation probability p = 0.8 (sparse network1).

2. Preferential attachment with a = 2 and b = 2 (similar to (Barabási et al., 2002)).

3. Forest fire with p = 0.35 and r = 0.57 (‘sparse graph’ instance in (Leskovec et al.,

2007)).

We report trends in the average shortest path length, effective diameter, clustering coef-

ficient, largest eigenvalue of the adjacency matrix, and the densification exponent of the

DPL.

2.3.3.1 Random Attachment

Figure 7 shows various properties of the ground truth network relative to 5 missing past

networks. We focus first on the average shortest path length and the effective diameter,

which are both statistics of the pairwise shortest path length distribution. Even with a

relatively small amount of missing data of 50 timesteps, the trend in the observed dataset

1Note that the edge creation probability is distinct from the edge probability in classical Erdös-
Rényi graphs. In the random attachment growth model, limp→1 E(t) = V (t), which is the classical
definition of a sparse graph.
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is always the opposite of the trend in the underlying network. This is not only a qualitative

difference (increasing vs. decreasing), but also numerically quite a large difference at short

times.

Predictably, as the amount of missing data increases, the observed trend takes longer

to converge to the true trend; with 100 censored timesteps (the second gray trend from

the left), the ground truth and missing past trends appear to be converging in about 1,000

timesteps – which represents more than 10 times the number of vertices in the missing past.

This convergence takes considerably longer with more missing data. For example, with 250

missing past timesteps (and thus, 250 missing past vertices and 250 ∗ 0.8 = 200 edges in

expectation), the missing past trend in the average shortest path length is a little less than

double its ground truth value at the end of 1000 timesteps. The effective diameter is almost

three times its true value. Perhaps what is of most concern is that qualitatively, the missing

past trends appear to be decreasing, whereas the ground truth trend is increasing in both

cases. The clustering coefficient and principal eigenvalue appear to be good qualitative

approximations even with missing past data. However, the former is a biased measure that

is intrinsically correlated with the average degree, and the latter is known to correlate with

the maximum degree, decreasing their value as dynamic graph characterizations.

Finally, the most surprising finding here is that of the DPL densification exponent α

(see Definition 2.1.6). Recall that α lies strictly between 1 and 2, and that a value greater

than 1 indicates that the number of edges is growing superlinearly relative to the number of

nodes. In the random attachment model, the number of edges is a constant function of the
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Figure 7: Random attachment network model with p = 0.8: the effect of 5 different amounts
of missing data on the ground truth (empty circles) and missing past (filled circles) networks.

number of nodes, so the DPL is known not to hold in this case. However, the re-discovery

process has the following effect in the early stages of observed network growth: when a

new edge is created between two vertices in the censored graph, the observations show the

appearance of two new vertices and one new edge, instead of one new edge and no new

vertices. The number of edges therefore appear to grow slowly initially, as censored vertices

are re-discovered. This manifests in an apparently super-linear growth of the number of

edges compared to the number of nodes over the later portion of the observation period,

whereas the bias is really towards sub-linear growth in the early stages. Unfortunately, both

phenomena can manifest as super-linear fits with regression.
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For each missing past network, we used non-linear least-squares regression to fit the

Additive DPL equation and linear least-squares on log-transformed data to fit the Multi-

plicative DPL equation. Figure 7e shows the densification exponent α for each missing past

dataset, with C = 0 corresponding to the ground truth dataset. In all cases, α is greater

than 1, apparently suggesting that densification is taking place in the underlying system

when we know that this is not the case. Larger amounts of missing past lead to higher

densification exponents using the Additive DPL equation; the Multiplicative DPL appears

to level off and then decrease. This can be explained by the re-discovery process being more

likely to uncover nodes that already existed in the censored portion of the network due to

its increased size.

2.3.3.2 Preferential Attachment

We now consider a network that is growing according to the Preferential Attachment

model, which is a more realistic than the random attachment model analyzed in the previous

section. We conduct a similar set of experiments as with the random attachment model by

censoring a portion of the initial output of the network growth model.

The results are quite similar to those of the random attachment model. Figure 8 shows

measurements for the ground truth and missing past networks of various sizes. As with the

random attachment model, the missing past networks exhibit false trends in both the aver-

age shortest path length and effective diameter over time. However, they are significantly

more pronounced than in the random attachment model, both qualitatively as well as quan-

titatively. Although the trend in the underlying networks is growing slowly, as predicted by
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theoretical results (Bollobás and Riordan, 2004), the observed network exhibits an initially

sharply decreasing effective diameter, followed by slow convergence to the true trend. Thus,

we can conclude that the spurious trends in the random attachment model were not solely

the result of the random network structure. The clustering coefficient measure also exhibits

a false trend at short times, but converges to the true trend quickly.

The DPL densification exponents α also show strong variability with the amount of

missing past data. Particularly, the Additive DPL equation appears to exhibit a linear

dependence on the size of the missing past network. However, it is unlikely that this

property, even if it holds generally, can be used to determine the size of the missing past

from the densification exponent; that would only be applicable if the underlying network

was truly growing according to preferential attachment. Once again, two sources of concern

are the strong dependence of α on the missing past size, and the very fact that α indicates

densification with a very small amount of missing past when the ground truth network does

not possess that property.

2.3.3.3 Forest fire

Finally, we analyze a configuration suggested by the authors of the Forest Fire model.

Since the model appears to be analytically intractable (Leskovec et al., 2007), we use a

parameter set that has been empirically shown to generate a growing sparse network with a

slowly increasing effective diameter. We also adjusted the timescale used for the experiments

to match that in the original paper to allow for an easy comparison of behavior; it is about

10 times longer than the timescale used for the other experiments. Since the Forest Fire
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Figure 8: Preferential attachment network model: the effect of 5 different amounts of
missing data on the ground truth (empty circles) and missing past (filled circles) networks.

model is a type of ‘copying’ model (Kumar et al., 2000), we might expect different results

than the random and preferential attachment models. Figure 9 shows results for the ‘sparse’

configuration of the Forest Fire model.

The trends in path length statistics are somewhat unusual: the ground truth network

has a slowly increasing diameter, much like the preferential and random attachment models,

the effective diameter in the missing past networks in Figure 9b are essentially constant after

a brief initial period. This can be explained as a facet of the forest fire graph generation

process. When a vertex is revealed in the missing past network, it burns edges and thus

re-discovers old vertices in the ground truth network. In practice, this ‘forest fire’ process
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(described in Section 2.3.2) burns out very quickly, and thus the re-discovered vertices are

short distances away from the new vertex, keeping the effective diameter low. When the

network is large enough, this effect becomes insignificant, and the trend manifests as an

almost constant effective diameter. This is therefore a case when the data suggests a steady

state where there is none.

Other properties not based on shortest paths display errors or consistency similar to the

random and preferential attachment models: the clustering coefficient at short times shows

a trend contrary to the ground truth, and the principal eigenvalue tracks its ground truth

value qualitatively, if not quantitatively. The densification exponent, however, shows the

same dependence upon the amount of missing past as the other models, ranging between

approximately 1 and 1.3 for a ground truth value near 1. We note that the dependence

of α resembles the trend in the random attachment model (Figure 7), suggesting that the

dependence of the bias in certain cases might be related to the relative sizes of the missing

past and observed networks. Whether this is a universal feature, and if the size of the

missing past network might be computable from it, is a question for future research.

2.4 Sensitivity of measured trends in interaction networks

In the previous section, we asked how sensitive certain measures are on growing citation

networks, given the presence of various amounts of missing past data. In this section, we

ask if the same trends in the measures of growing interaction networks are meaningful.

Recall that in an interaction network there is an underlying dynamic process that causes

entities to interact with each other over time, and that we discover the structure of the
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Figure 9: Forest fire model with p = 0.35 and r = 0.57: the effect of 5 different amounts of
missing data on the ground truth (empty circles) and missing past (filled circles) networks.

network only through observing these interactions. This is an appropriate model for many

communications and information networks, such as phone call, e-mail, physical proximity,

and instant message logs. For example, in the case of e-mail networks, if a user never

sends a single e-mail, their existence will generally not be noted on transmission logs, and

conversely a user’s firstobserved e-mail transmission would suggest true network growth to

the observer, regardless of whether the observation contains the first instance of that edge.

One of the assumptions in measuring the change in a growing interaction network is,

naturally, that the underlying network is truly changing with respect to some measure M .

If this were not the case, then any trend in M over time would simply be a reflection of
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the convergence of a sampling process to the limiting value of M . It would be a reflection

of the sampling process, a product of interaction network dynamics and missing past data.

In fact, at least one study uses the method described here to study the convergence of

various network measures to limiting values (Latapy and Magnien, 2008). In this section,

we expand upon an elegant conceptual framework proposed by (Pedarsani et al., 2008)

called edge sampling to ask if a given dynamic network dataset is growing at all. In other

words, is there a plausible dynamic sampling process operating on an unchanging network

that can statistically explain a trend in measure M when M is truly constant?

Definition 2.4.1. (Edge Sampling) The basic assumptions of edge sampling are as follows:

1. There is a fixed or slowly changing (relative to the size of observations) underlying

graph.

2. Edges in this underlying graph randomly ‘activate’ according to a sampling distribu-

tion at each timestep, and are thus discovered by the observer.

Since we are assuming a steady state with respect to measure M , under a consistent

sampling process and enough data, we can treat the final aggregate static network obtained

from a sequence of observations as a good approximation of the underlying system. We

then specify an edge sampling model to randomly activate edges from the aggregate graph

at each timestep of observations, simulating interactions (and thus observations) along an

unchanging graph. By starting with a real dataset and specifying an edge sampling model,

we can perform many Monte Carlo edge sampling simulations and determine the expected
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trend over time in any graph theoretic property, as well as its sampling distribution, as a

form of statistical permutation test (Good and Wang, 2005). Although extremely computer

intensive when operating on large networks, permutation tests have a long history and are

extremely powerful analytical tools.

In the next subsection, we describe the basic edge sampling model proposed in (Pedarsani

et al., 2008). In Section 2.4.2, we describe four additional edge sampling models to satisfy

the second part of Definition 2.4.1. Since permutation methods are very computationally

intensive, we report results on a number of smaller datasets:

1. Enron (internal). All e-mail traffic between @enron.com e-mail addresses, quantized

by month.

2. IMDB Photos. Celebrities photographer together, quantized by month.

3. DBLP-FOCS. A small sample of the DBLP digital bibliographic database, focusing

on co-authorship in the Foundations of Computer Science conference. Note that the

earlier years have significant missing data issues. The quantization timestep is one

year.

4. HEP-Th. Citations in high-energy physics publications, quantized by month.

2.4.1 Uniform Edge Sampling

The basic edge sampling model assumes an underlying graph G = (V,E), from which

edges are ‘activated’ at each timestep uniformly and independently at random with a fixed

probability pe (Pedarsani et al., 2008). Vertices are only discovered as a consequence of an
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edge activating; thus, isolated vertices of degree 0 are never discovered. We present a minor

modification of the edge sampling model to a temporal setting here.

Let v(t) and e(t) be the number of nodes and edges that have been discovered from the

underlying graph at time t, with v(0) = 0 and e(0) = 0. At each timestep t ≥ 1, each edge in

the underlying graph activates with fixed probability pe independent of all other edges, and

is therefore discovered if it has not previously activated. The number of activations of an

edge over t timesteps is therefore binomially distributed as Bin(t, pe), and the probability

that the edge does not activate at all after t timesteps (and thus remains undiscovered) is

qe:

qe = (1− pe)
t

At time t, the expected number of discovered edges e(t) is the mean of a second binomial

distribution with probability (1− qe) for E trials.

E[e(t)] = E · (1− qe)

= (1− (1− pe)
t)

V ar[e(t)] = E · (1− (1− pe)
t)(1− pte)

A node is discovered if one of its adjacent edges fires, and remains undiscovered if all of its

edges do not fire. The probability of a node of degree d remaining undiscovered at each

timestep is therefore qde . After t timesteps, this probability is (qde )t. Conditioning on node
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degree, where fD(d) is the proportion of nodes in the graph with degree d, the probability

of a node not being discovered after t timesteps is given by:

qv(t) =
V−1
∑

d=1

qd·te · fD(d)

Thus, the expected number of nodes v(t) at time t is:

E[v(t)] = V · (1− qv(t))

= V · (1−
V−1
∑

d=1

qd·te · fD(d))

Given the size (number of vertices and edges) and empirical degree distribution of an

‘underlying’ network, and a fixed sampling probability pe, the edge sampling model lets

us analytically determine the number of vertices and edges we can expect to see at each

timestep in a dynamic discovery process. This, in turn, allows us to theoretically determine

if we can expect to see edge densification for a given value of the sampling parameter

pe. It was shown that this model leads to densification in graphs with a power-law-like

distribution (Pedarsani et al., 2008). Analytically determining more complex properties,

such as the average shortest path length, quickly becomes difficult1, but can be investigated

using Monte Carlo analysis.

1As an example, the proof techniques used to analytically determine the diameter of a scale-free
graph are far from trivial (Bollobás and Riordan, 2004).
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2.4.2 Other edge sampling models

We describe four additional edge sampling models to be used for hypothesis testing.

Each model attempts to preserve some statistic of the observed dataset.

2.4.2.1 Size-preserving edge sampling

The size-preserving (SP) edge sampling model samples |Et| edges from the static graph

at each timestep, independently and uniformly at random without replacement, where |Et|

is the number of edges actually observed in the dataset at time t. This model effectively

stipulates that there is an unknown process governing the number of edges observed at

each timestep (an observation or sampling process), but that within each timestep, edges

are activated uniformly at random from the underlying network (the process governing

interactions in the underlying system). Note that edges are chosen without replacement for

generating the observation for a particular timestep, but with replcement across timesteps.

Figure 10 shows the distribution of edge multiplicity values (i.e., , the distribution of

the number of times each edge was observed in the dataset) for three datasets that exhibit

edge multiplicity. A notable feature of all three distributions is their heavy skew: most

edges are observed only once within the observation period, but a significant number are

observed multiple times. In the same figure, we also show fitted distributions to the data:

a power-law fit using the methods described by (Clauset et al., 2009), and exponential and

log-normal distributions fitted using maximum likelihood estimators.

In the SP edge sampling model, each edge has the same probability of being chosen at

a particular timestep, although with different probabilities across timesteps, so the distri-
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Figure 10: Distribution of edge multiplicity (also known as support) in various datasets,
along with several common fitted distributions, shown on a doubly logarithmic scale. Al-
though the data is heavily skewed, none of the distributions appear to be a good fit.

bution of edge multiplicities is Poisson-binomial (Wang, 1993), which is a general case of

the binomial distribution. If E is the number of edges in the aggregate static network, and

Et the number of edges observed in the dataset at time t, then the probability of picking

an edge at any timestep is Et/E. Since this is generally small relative to the number of

timesteps, the Poisson-binomial distribution is well-approximated by a Poisson distribu-

tion (Chen and Liu, 1997), which can appear as a skewed distribution qualitatively similar

to the empirical distributions in Figure 10. Although a Poisson distribution does not yield

a good fit to the data in Figure 10, it can serve as a useful first approximation.

2.4.2.2 Degree-preferential edge sampling

Similar to the preferential attachment growth model (Newman, 2001a), we propose the

degree-preferential (DP) discovery model as a refinement of the SP edge sampling model.

In the DP model, Et edges are still picked at each timestep, but not uniformly at random.
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Instead, the probability of an edge being sampled is directly proportional to the product of

the degrees of its vertices, i.e., edges between nodes prolific in connections are more likely to

be re-activated. Specifically, the probability of sampling an edge e = (u, v) at any timestep

is given by:

p(euv) =
d(u) · d(v)

∑

i 6=j d(i) · d(j)
(2.3)

where d(i) is the degree of vertex i. Algorithmically, sampling Et edges without replacement

from a graph according to Equation Equation 2.3 can be carried out efficiently using the

weighted random reservoir sampling (WRS) algorithm described in (Efraimidis and Spirakis,

2006).

Intuitively, the DP model still stipulates some unknown process dictating the number

of edges observed at each timestep, but a slightly different underlying interacting process

that governs edge activations. In the DP model, being connected to a high degree vertex

increases a vertex’s chance of generating an activation at any given timestep. Furthermore,

interactions between two connected high-degree vertices are more likely than between a pair

of low-degree vertices.

2.4.2.3 Rate-preserving edge sampling

The rate-preserving (RP) edge sampling model samples each edge independently at each

timestep with probability equal to its estimated probability from data, i.e., the edge mul-

tiplicity divided by the total number of timesteps. This is perhaps the most realistic of the
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edge sampling models presented here. Although it makes a strong independence assump-

tion, it reproduces a number of statistics of the original dataset, such as the distribution

of edge multiplicities. For an edge with multiplicity c in the dataset, its multiplicity under

the RP model is a binomially distributed random variable with success probability c/t.

2.4.2.4 Size and Count-preserving edge sampling

Similar to the size-preserving sampling model, the size and count-preserving (SCP)

sampling model preserves not just the number of edges observed at each timestep in the

original dataset, but also the total number of activations of each edge, i.e., edge multiplicity.

Unlike the RP model, however, the multiplicity of each edge is a constant c instead of a

random variable binomially distributed with mean c.

Preserving both the number of edges at each timestep as well as the total count of each

edge is a non-trivial problem. We use a common Markov Chain Monte Carlo (MCMC)

approach to perform this randomization, which has been previously used to randomize

single graphs while preserving properties like the average path length (Hanhijärvi et al.,

2009), and originally developed to generate random bipartite perfect matchings (Broder,

1986).

The approach involves representing each possible satisfying dynamic network as a node

in a Markov chain with equiprobable transitions to all nodes that can be reached by per-

forming a single swap operation. In our context, this operation swaps two distinct edges

in different timesteps such that the total count of edges in each timestep remains the same

before and after the swap. By iterating this Markov chain, we eventually reach the limiting
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uniform distribution and have successfully randomized the network subject to the size- and

count-preserving constraint.

In practice, the Markov chain is iterated until it mixes before being used, but it is

difficult in general to tell when the limiting distribution has been reached; in (Hanhijärvi

et al., 2009), a constant number of iterations was used. We run the chain forward for a

number of iterations equal to the total number of edge occurrences before using the random-

ized network, and then use each randomized network as the starting point for subsequent

randomizations.

2.4.3 Empirical results

Recall the that the four discovery models we proposed were: rate-preserving (RP), size-

preserving (SP), degree-preferential (DP), and size- and count-preserving (SCP). Given the

original dataset, none of these edge sampling models require any parameters. We ran each

model between hundreds and thousands of times (depending on the size of the dataset)

on each of the five datasets described earlier. For each run, we sampled edges from the

final aggregate static network for the same number of timesteps as the original dataset, and

recorded the values of various graph properties at each timestep. From these values, we can

estimate the mean property value at each timestep under a given edge sampling model, and

thus the mean trend, as well as the variance and other statistics. Intuitively, if the edge

sampling models are bad fits, the mean trend will be far from the actual observed trend.

Figure 11 shows the mean effective diameter d90 of each edge sampling model, along

with a band showing two standard deviations. Closed circles represent the original value of
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Figure 11: The effective diameter over time of various datasets (solid line), and a band of
two standard deviations around the expected trend under each edge sampling model.
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the effective diameter measured in the dataset at each timestep. The DBLP-FOCS dataset,

shown in Figure 11a, is a good example of a reasonable fit to an edge sampling model.

The SP and SCP appear to be very good fits to the observed data. In both cases, the

qualitative trend from the edge sampling model follows the trend observed in the data

quite closely. Furthermore, points in original dataset are quite often within two standard

deviations of the edge sampling trend. The DP model yields a slightly worse fit, with the d90

value ending higher than the observed data. Fits for the other datasets are not as close as

the DBLP-FOCS dataset, but all show the same qualitative trend of a decreasing effective

diameter.

Recall that one interpretation of the edge sampling model is that the underlying network

is not changing at all; edges are merely being activated at each timestep and discovered.

This is exactly the algorithm used for the sampling process – edges are sampled from a fixed,

unchanging, underlying network. In spite of this, the trend suggested by the measurements

is that the effective diameter in the underlying network is decreasing. The spurious trends

are not insignificant either, and all follow the same decreasing trend, which might suggest

a universal phenomenon when it is demonstrably an artifact.

2.5 Summary and suggestions

In this chapter, we described two common methods for measuring the properties of

dynamic networks over time, and summarized the trends in common properties reported on

multiple datasets. We also classified dynamic network data into two broad classes: citation

networks and interaction networks, depending on whether the change in the structure of the
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underlying process is either directly observed or measured through a proxy of interactions

occurring on the network, with possibly independent dynamics. Most importantly, we

systematically analyzed whether trends in common measures can be attributed to true

change in the underlying system, or explained as either missing past artifacts (citation

networks) or artifacts introduced by the dynamics of interactions (interaction networks).

There is an inherent bias in the growing network methodology for citation network mea-

surement at short times, particularly in networks with a missing past. This bias can be

understood as being caused by two sampling processes at play in the collection of network

data: re-discovery of pre-existing vertices, and true growth in the underlying network. Prior

studies assumed that all observations could be attributed to growth of the underlying net-

work. In most cases, however, the sampling process is doubly stochastic as explained, with

both discovery and growth playing a role. Very small amounts of missing past data can

manifest as significantly erroneous trends in observations. Using synthetic data generated

by well-known random graph models, we were able to show that: densification (super-linear

growth of edges relative to nodes) can manifest in networks that are not densifying, effective

diameter can manifest as sharply decreasing in networks with a slowly increasing effective

diameter, and these biases cannot be detected by withholding a portion of the observations.

Similarly, trends in common measures in a number of real interaction network datasets

can be explained using simple random models of interactions occurring along an unseen

graph structure that we want to measure. The change in the graph is not directly observ-

able, but we assume that the observation of an interaction indicates the existence of an
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edge between the adjacent vertices. New interactions occurring along freshly created paths

eventually reveal those paths to the observer, but conversely, there is no way to tell if a

newly discovered path is actually new. Thus, we hypothesize that there might be little or no

growth in the underlying network, and the observations are purely a product of discovering

pre-existing vertices and edges. Using randomization tests, the expected trend under this

hypothesis matched real data qualitatively, and in many cases, quantitively as well, within

acceptable statistical bounds. Using the growing network method on an interaction network

therefore reveals a trend that can also be interpreted as the convergence of measure M to

its limiting value under a steady state hypothesis for M .

In the rest of this section, we focus on suggestions for future research.

2.5.1 Choosing an appropriate network representation

Recall that we had previously been able to classify network datasets into two categories:

interaction networks, where the observations at any timestep represent instantaneous as-

sociations between vertices that can re-occur in the future, and citation networks, where

observations represent the one-time formation of permanent links. We deal with each sep-

arately:

• (Interaction networks) A fully dynamic or dynamic interaction network with some

form of smoothing or vertex and edge decay might be the most appropriate represen-

tation (see Section 2.1). If vertex or edge removal is a characteristic of the underlying

system, then one of the following two methods could be used to reduce noise in the

time series of observations:
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1. (Weighting) Use a decay function to weight edges, and then either use weighted

graph measures (Newman, 2001; Barrat et al., 2004; Newman, 2004; Zhang

and Horvath, 2005; Barthelemy et al., 2005), or remove vertices and edges that

have fallen below a threshold weight at any time1 (Kossinets and Watts, 2006;

De Choudhury et al., 2010).

2. (Smoothing) An alternative to weighting graphs is to expand the timescale to

consist of larger timesteps in order to reduce noise. For example, if the observa-

tions of a network are at the resolution of a day, one could consider a dynamic

network that aggregates a month of observations into a single timestep. Further-

more, one could consider a sliding window over this observation stream instead of

a shifting-window quantization. A number of studies have looked at the effect of

different timescales on network properties (Delvenne et al., 2010; De Choudhury

et al., 2010; Eagle and Pentland, 2006), and there have been at least two algo-

rithms proposed to find meaningful timescales for a time series of graphs (Sun

et al., 2007; Sulo et al., 2010).

• (Citation networks) Although growing networks can be an appropriate representation

for citation networks, the missing past issue introduces a vertex discovery process. In

this case, we can only suggest that the network is allowed to stabilize to the point

where new observations comprise a smaller portion of the aggregated network. This

1A recent arXiv working paper suggests that this method might be too noisy in general (Thomas
and Blitzstein, 2011).
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eliminates the noisy initial portion of the network when the discovery process is most

likely to have a significant impact. Note that taking such a precaution is a heuristic;

it does not solve the missing past problem.

Figure 12 shows the proportion of new edges and vertices introduced at each timestep

as a function of the aggregate growing graph size at that timestep. As expected,

new vertices and edges comprise a smaller portion of the aggregate graph as time

progresses, so a simple heuristic might be to wait until new observations comprise no

more than a small portion of the aggregate graph before considering measurements.

This is similar in principle to the initial ‘burn-in’ period of many iterative statistical

algorithms, where the output of an algorithm is discarded until the underlying model

has reached stationarity (Hastie et al., 2001, p.280). Setting this threshold arbitrarily

at 5% would entail dropping approximately the first 20 measured data points of the

patent citations dataset (Leskovec et al., 2007), the first 40 timesteps of the HEP-Th

co-authorship dataset (Leskovec et al., 2007), and the first 20 timesteps of the IMDB

photos dataset (Lahiri and Berger-Wolf, 2008).

An entirely different solution would be to abandon the graph-theoretic representation

of networks for one that is perhaps less sensitive to noise and missing past effects. As we

mentioned earlier, spectral density plots have been proposed as a concise and effective way

to look into the structure of networks (Banerjee and Jost, 2009), but doing so over time

poses both a mathematical and visualization challenge. Alternatively, latent space models

embed the nodes of a social network into a vector space, using edges to define some form of
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Figure 12: The number of previously unobserved edges and vertices (insets) at each timestep
relative to the size of the aggregated network at that timestep for four real datasets.

distance function (Hoff et al., 2002). These models have been extended to dynamic networks

as well (Sarkar and Moore, 2005), but represent a fundamentally different direction than

classical graph theory.

2.5.2 Equilibrium assumption

Recall that a fundamental assumption in static network analysis is that the physical sys-

tem is in equilibrium with respect to graph theoretic properties, so taking a large enough

sample of the network yields representative approximations to the properties of the under-

lying system. On the other hand, one of the tenets of growing network analysis is that the

properties of the underlying system are changing over time, as evidenced by the trends in

graph theoretic properties over time.

As a telling example of this difference, consider two lines of research that use the same

methodology, report essentially the same observations, but start with different assumptions

and come to very different conclusions. Latapy and Magnien (Latapy and Magnien, 2006)

ask how large a network sample must grow until the properties of the aggregated network
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reach a steady state. Their methodology samples some networks over time, only because

this is a natural order for those datasets, and shows graph-theoretic measurements that

eventually converge to a fixed value. For measurements that converge, the authors conclude

that the sampling process was effective and the steady-state values of the underlying network

have been discovered. On the other hand, classic studies of growing networks use the

same methodology to infer how the properties of the underlying network are changing over

time (Barabási et al., 2002; Leskovec et al., 2005). In both cases, we see qualitatively

identical plots of the same property (e.g., average shortest path length over time in an

aggregated network), but diametrically opposite inferences about the underlying network.

So are our observations successively converging to the underlying network, which is in

a steady state, or are each of our observations representative enough to allow us to infer

that the underlying network is changing? There is unlikely to be a general answer to

this question, since one can imagine different situations in which each is plausible. The

methods we have presented earlier in this chapter allow us to explicitly construct some of

these situations. Thus, the equilibrium assumption, or lack thereof, needs to be justified.

Consider the numerical analogy to growing network analysis shown in Figure 13. In each

figure, a process is emitting uniformly distributed random numbers, either with a constant

expectation or a trend as shown by the dotted line. The solid line shows the running average

of the observations, similar to how growing networks accumulate observations into a single

graph. The solid line at each time point represents the best estimate for the expectation

of the process. In an alternative interpretation of the solid line, the expectation of the
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Figure 13: An illustration of the running average of a growing pool of random variates drawn
from various uniform random distributions, as an analogy to the difficulty of detecting
nonstationarity with the growing network methodology at short times. The task is akin to
inferring the behavior, not the value, of the dotted line (ground truth) from a single growing
pool of observations (solid line).

underlying process is either roughly constant (leftmost figure), or slowly growing (middle

and right figures). However, the ambiguity of the setup and the actually measured solid

line makes it difficult to infer the behavior of the dotted line. Neither is correct in all cases,

so the observed measurements themselves cannot be used as a justification for assuming

equilibrium or non-equilibrium at short times.

2.5.3 Dynamic measures

Finally, we note that interaction networks appear to be more common than citation

networks. Since interaction dynamics can play a big part in our view of the underlying

physical system, it might be advantageous to develop measures that directly extract in-

formation about the dynamics of the process, rather than measuring properties of a static

structure at fixed time intervals. This is the motivation for the techniques developed in the

remaining chapters of this thesis.



CHAPTER 3

MEASURING AND MINING PERIODICITY

In this chapter, we deal with the detection of a type of predictable behavior in such sys-

tems, namely periodically recurring interaction patterns in networks that change over time.

Our goal is to detect periodic behavior even if it persists only for a short period of time,

since such locally periodic behavior often holds a special meaning in real-world systems. As

the simplest form of predictable behavior, periodic interaction patterns can indicate inter-

esting relationships between the individuals involved in the interactions. Furthermore, with

the right formal definition of what constitutes periodic behavior, the aggregate periodicities

of an entire set of mined interaction patterns can yield insight about the global dynamics

of the system being observed. We define the periodic pattern mining problem for dynamic

networks as a step towards this goal, and describe an efficient algorithm to mine all such

patterns from a stream of dynamic interaction data.

Part of the motivation for our focus on periodicities is the fact that streams of dense,

time-varying interaction data are being collected in very diverse settings, and the first step

in numeric signal processing is generally to take the Fourier transform of a signal to decom-

pose it into a function of sinusoidal components, and subsequently to be able to analyze the

spectrum of periodicities the signal contains. In this chapter, we aim to develop a similar

tool for dynamic networks. As a motivating (but not unusual) example, ecologists often

tag wild animals with GPS or proximity sensors to study behavioral and social associa-
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tion patterns of the animals (Fischhoff et al., 2007; Sundaresan et al., 2007; Juang et al.,

2002). This results in a continuous stream of interaction data, where periodically recurring

patterns might correspond to seasonal or other recurrent association patterns. The same

methodology has been used in human behavior experiments, with location-aware cellphones

naturally replacing tracking collars (Eagle and Pentland, 2006), or human interactions being

approximated by mobile phone or e-mail logs (Nanavati et al., 2006; Diesner and Carley,

2005; Chapanond et al., 2005) . Analyzing the local periodicities in such datasets presents

opportunities for social science research, as well as commercial applications like recom-

mender systems, traffic analysis and user modeling. The method presented in this chapter

helps to answer two questions: what are the typical periodicities present in a dataset, and

what are the specific interaction patterns that occur at these periodicities?

Our definition of the periodic pattern mining problem is specifically tailored for the

analysis of dynamic networks, and is generic enough to handle all the situations just men-

tioned. It differs from earlier work in periodic pattern mining primarily in the use of two

related concepts: (a) the concept of closed subgraphs, and (b) the principle of parsimony.

Closed subgraph mining has been extensively explored in the context of a related problem

of frequent pattern mining (Han et al., 2007). It draws from the areas of formal concept

analysis and lattice theory to reduce redundancy in the definition of a frequent pattern, and

thus reduces the potentially exponential (in the size of the input) number of output patterns

that must be computed (Pasquier et al., 1999; Carpineto and Romano, 2004). The principle

of parsimony is commonly known as Occam’s Razor, and is a widely practiced guideline that
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suggests favoring the simplest hypothesis that is consistent with a phenomenon. Combining

these two concepts allows us to define periodic patterns in a way that avoids any redundant

information, is more amenable to analysis, and allows the development of a provably efficient

online mining algorithm. Furthermore, all the information contained in earlier definitions

of periodic pattern mining is contained in ours in a more compact form, i.e., the output of

earlier algorithms can be deterministically generated from the output of our algorithm, but

such a process would only add redundant information to the output.

We describe the periodic subgraph mining problem for dynamic networks, or more gener-

ally, for an arbitrary time series of structured interaction data. We draw on the concept of

closed subgraphs from the related area of frequent pattern mining in order to mine coherent

interaction patterns without redundancy. The theoretical framework of closed subgraphs

allows us to derive an exact upper bound on the maximum number of patterns possible

in any dynamic network, which subsequently allows us to develop a conceptually simple

but powerful mining algorithm with polynomial worst-case time and space guarantees. The

last point also underscores the fact that periodic subgraph mining in dynamic networks

has inherently lower computational complexity than frequent pattern mining, which is also

proved in this chapter. Another important aspect of our algorithm is the fact that it only

requires a single scan of the data and heuristically accommodates patterns that are not

perfectly periodic, which is what might be expected in real-world domains.

We demonstrate the usefulness of mining periodic patterns on four diverse real-world

datasets. Mirroring the increasing diversity of network analysis domains, we examine
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datasets of wild zebra association patterns, geographical movement patterns of university

students, and the sightings of celebrities associated with the entertainment industry, among

others. In addition to demonstrating the practical efficiency of our algorithm, we find that

analyzing the collective periodicities of all mined patterns is indeed informative about the

dynamics of the system being studied, yielding highly intuitive results about the specific

systems we analyzed. We also found a number of interesting patterns which are intriguing

because of a combination of their structure and periodicity. Some of these patterns occur

relatively infrequently and might not have stood out had only their frequency of occurrence

been considered, as is the case in frequent pattern mining. The fact that we can recover

these structural patterns is an advantage over methods that deal with dynamic networks as

tensors (Sun et al., 2006).1

This chapter is organized as follows. In the next section, we present some preliminary

definitions related to dynamic networks, as well as some graph theoretic properties that

are key to the inherent complexity of the problem. In Section 3.2, we formally define the

mining problem, which incorporates the concepts of closed subgraphs and parsimony. This

is followed by a discussion of related literature in Section 3.3. In Section 3.4, we analyze

the inherent complexity of the problem and derive an exact upper bound on the maximum

number of possible periodic subgraphs in any dynamic network. We show that the mining

1An alternative approach to detecting periodicities is to use the PARAFAC/CANDECOMP de-
composition on a dynamic network and then use a conventional Fourier transform along the time
dimension. This is an interesting topic for future research.
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problem is in the computational complexity class P (polynomial), in contrast to the closely

related frequent pattern mining problem (Boros et al., 2002; Yang, 2004). The complexity

analysis of the problem is then used in Section 3.5 to build an efficient, online mining

algorithm. The results of our experimental evaluation are presented in Section 3.6, followed

by some concluding remarks and possible future research directions.

3.1 Preliminaries

Dynamic networks are a representation for a time series of interactions between a set of

unique entities. Let V ∈ N represent this set of entities. Interactions between entities can

be either directed or undirected, and are assumed to have been recorded over a period of

T discrete timesteps. The question of how much real time should constitute a timestep is

beyond the scope of this thesis; we use natural quantizations specific to each of our datasets,

such as one day per timestep. The only requirement is that a timestep should correspond

to a meaningful amount of real time, as the periodicities of mined subgraphs will be in

multiples of the chosen timestep.

Definition 3.1.1. (Dynamic network) A dynamic network G = 〈G1, ..., GT 〉 is a time-

series of graphs, where Gt = (Vt, Et) is a simple graph of interactions Et observed at timestep

t among the subset of entities Vt ⊆ V at timestep t.

Figure 14 is an example of a dynamic network with five timesteps. Definition 3.1.1 im-

plies a convenient graph theoretic property that reduces the high computational complexity

of many algorithmic tasks on graphs: since a vertex represents a unique entity, each vertex

v in a particular timestep’s graph Gt has a unique vertex label. This constitutes a class



108

1 56

2 34

1 5

8

6

2

7

3

9
13

1 5

12

6

2

10

3

11

14

9
12

10

11

14

1 56

3

Figure 14: An example of a dynamic network with five timesteps.

of graphs that can be represented as sets of integers, resulting in a reduction to quadratic

computational complexity (in the number of vertices) for certain hard graph problems, such

as maximal common subgraph and subgraph isomorphism (Dickinson et al., 2003; Lahiri

and Berger-Wolf, 2007; Lahiri and Berger-Wolf, 2008; Lahiri and Berger-Wolf, 2010).

Property 3.1.1. (Set Representation) For a graph G = (V,E) with unique vertex

labels, the set representation R for G is formed by mapping each vertex and edge to a

unique element in R, where R ⊂ N.

Since each vertex is uniquely identifiable by its label, it follows that each edge is also

uniquely identifiable by its endpoints. This allows each vertex and edge to be coded as

a unique integer, even across different graphs over the same vertex set. It can trivially

be shown that two graphs (or timesteps) will result in the same set R if and only if they

have identical vertex and edge sets. Although connectivity information is lost in the set

representation, it is a useful transformation for the following algorithmic tasks, which are

key to the development of our algorithm.
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Property 3.1.2. (Subgraph Testing) For two graphs G1 and G2 with unique vertex

labels, testing whether G1 is a subgraph of G2 or vice versa is equivalent to checking whether

the corresponding set representations R1 and R2 are subsets of each other. For this reason,

we use the subset operator ⊆ to denote a subgraph relationship between G1 and G2.

Property 3.1.3. (Maximal Common Subgraph) For a set f graphs with vertex unique

labels, finding the maximal common subgraph (MCS) is equivalent to the maximal inter-

section of their set representations. For a set of graphs G1, ..., GT , a vertex or an edge is

part of the MCS if it is part of every Gt. As a result, the maximal common subgraph always

exists, is unique and well-defined, but could possibly be the empty graph with no vertices or

edges. We use the intersection operator ∩ to denote the maximal common subgraph of two

or more graphs.

Property 3.1.4. (Hashing) A hashing function exists for graphs since the set represen-

tation R has a global ordering by virtue of R ⊂ N.

Figure 15 demonstrates the use of Property 3.1.1 to calculate the maximal common

subgraph of two graphs using set representation. A further implication of the set repre-

sentation is that a dynamic network can be represented as a transaction database (also

known as ‘market-basket’ data (Agrawal and Srikant, 1994)) for certain data mining tasks

like frequent subgraph mining1 (Inokuchi et al., 2000; Kuramochi and Karypis, 2001). Al-

1Since connectivity information is lost in the set representation, frequent connected subgraphs
and subgraphs with other specific graph-theoretic properties cannot be extracted from the set
representation.
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Figure 15: The correspondence between graph and set representations for graphs with
unique vertex labels. The example demonstrates the computation of the maximal common
subgraph of two graphs using set representation.

though mining for periodic patterns in time-ordered transaction databases has been studied

in different contexts (Özden et al., 1998; Han et al., 2007; Han et al., 1999; Yang et al.,

2001; Huang and Chang, 2005), one of the main advantages of our framework is the ability

to handle structured data like dynamic networks (with connectivity information) while also

being applicable to unstructured data like transaction databases.

We now introduce some terminology from the frequent pattern mining problem to be

used in our problem definition and analysis.

Definition 3.1.2. (Support) Given a dynamic network G of T timesteps and an arbitrary

graph F = (V,E), the support set S(F ) of F in G is the set of all timesteps t in G where

F is a subgraph of Gt, which we denote F ⊆ Gt. The support of F is the cardinality of its

support set, |S(F )|:

S(F ) = {ti, ..., tj} such that ∀t (t ∈ S(F )↔ F ⊆ Gt).



111

Definition 3.1.3. (Frequent Subgraph) Given a dynamic network G of T timesteps,

an arbitrary graph F = (V,E) is frequent if its support exceeds a user-defined minimum

support threshold σ ≤ T .

Definition 3.1.3 is the basis of the well known frequent pattern mining problem, which

deals with the extraction of all subgraphs F where |S(F )| ≥ σ. An implication of the

näıve definition of a frequent subgraph is the downward closure property, which states that

every subgraph of a frequent subgraph F is itself frequent. This serves as the underpinning

of Agrawal and Srikant’s classic Apriori algorithm, which searches for large frequent patterns

by iteratively concatenating the smaller, frequent sub-patterns implied by the downward

closure, relying on the sparsity of larger frequent patterns (Agrawal and Srikant, 1994). The

downward closure is what makes a principled, incremental search through pattern space

tractable, but is also a double-edged sword. Although many improvements have been made

to the classic Apriori algorithm (Han et al., 2007; Cheng et al., 2008), any mining algorithm

required to explicitly enumerate every frequent pattern in a dataset would, in doing so, have

to enumerate the exponential number of subgraphs of every frequent subgraph which is a

redundant and resource expensive process. The cornerstone of a solution to this problem

is the use of closed subgraphs (Pasquier et al., 1999; Carpineto and Romano, 2004; Han et

al., 2007).

Definition 3.1.4. (Closed subgraph) Given a dynamic network G of T timesteps and

an arbitrary graph F = (V,E), F is closed if it is maximal for its support set: no vertex or

edge can be added to F while maintaining its support.
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Mining frequent closed subgraphs is an elegant solution to the redundancy of the gen-

eral frequent pattern mining problem. It captures all the information of the more general

formulation, but can result in output that is exponentially smaller in size without any loss

of information. We therefore adopt it as an integral part of our problem definition, which

is described in the next section.

3.2 Problem Definition

We formally define the periodic subgraph mining for dynamic networks as a special

case of frequent closed pattern mining with important additional computational properties.

These properties allow the development of efficient mining algorithms and justify an inde-

pendent treatment of the problem, rather than an approach that would, for example, push

constraints into a conventional frequent pattern mining algorithm (Pei and Han, 2000; Garo-

falakis et al., 1999; Pei et al., 2002; Zhu et al., 2007). The relation to frequent pattern mining

also highlights the fact that we are searching for locally periodic patterns, i.e., those that

exhibit periodic behavior in a contiguous subsequence of the entire data stream. These are

also known as partially periodic patterns (Han et al., 1999; Ma and Hellerstein, 2001; Huang

and Chang, 2005). We begin with a basic formulation of the problem and then develop it

into a parsimonious formulation. We end this section by describing mechanisms to rank

periodic patterns and handle imperfect periodicity in real-world datasets.

3.2.1 Basic Formulation

Definition 3.2.1. (Periodic support set) Given a dynamic network G and an arbitrary

subgraph F = (V,E), a periodic support set of F in G, denoted SP = (i, p, s), is a maximal,
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ordered set of s timesteps starting at ti with every two consecutive timesteps being p steps

apart.

SP = (i, p, s) = 〈ti, ti+p, ..., ti+p(s−1)〉

subject to the following constraints:

1. Existence in G: F must exist at all timesteps in SP , i.e., ∀t (t ∈ SP → F ⊆ Gt).

Note that the implication in the constraint is only in the forward direction, unlike

Definition 3.1.3.

2. Minimum size: A periodic support set has to have at least two elements, i.e., |SP | =

s ≥ 2.

3. Temporal maximality: The support set cannot be extended in time to contain F and

still be periodic, i.e., F 6⊆ Gt(i−p)
and F 6⊆ Gt(i+p·s)

.

The phase offset of a periodic support set is defined as m = (ti − 1) mod p, since indices

start from 1. Thus, 0 ≤ m < p.

A key difference in the definitions of a support set for frequent pattern mining and

periodic pattern mining is that a single graph F can have multiple periodic support sets

to allow for multiple, disjoint, or overlapping periodic behavior. Thus, we require the

extraction of all periodic subgraph embeddings, rather than just the periodic subgraphs

themselves. This is encompassed in the following definition.

Definition 3.2.2. (Periodic subgraph embedding) Given a dynamic network G, a

periodic subgraph embedding (PSE) is a pair 〈F, SP 〉, where F is an arbitrary graph that
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Figure 16: An example of a dynamic network with 2 PSEs at σ = 3.

is closed over a periodic support set SP with |SP | ≥ σ. The following list summarizes the

properties of a PSE:

1. Minimum support: |SP | ≥ σ ≥ 2, from Definition 3.2.1.

2. Structural maximality: F is maximal over SP , i.e. F is the maximal common subgraph

of SP , from Definition 3.1.4.

3. Temporal maximality: SP is temporally maximal for F , from Definition 3.2.1.

Figure 16 shows an example of a dynamic network with two PSEs at σ = 3. The first is

the subgraph {(1, 4), (1, 5)} with a period of 2 and support set of 〈1, 3, 5〉, and the second

is the singleton vertex {1} with a period of 1 and a support set of 〈3, 4, 5〉. Note that the

subgraph {(1, 2), (1, 3)} is frequent but not periodic at σ = 3.

3.2.2 Parsimonious Formulation

We now address the issue of redundant information in the output. If we think of a PSE

from Definition 3.2.2 as communicating a set of timesteps at which a particular subgraph

exhibits periodic behavior, a PSE which communicates information that is already contained

in another PSE is redundant. For example, a subgraph F of period 2 with adequate support
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will also be output as a subgraph of period 4, and so on. This will continue for a fixed number

of multiples of the base period, depending on the support of the pattern and the minimum

support, in spite of the fact that the higher multiples communicate no new information

about the subgraph in question. Furthermore, when analyzing periodic behavior in terms

of the periodicities of mined patterns, there is no justifiable reason prima facie (or in keeping

with Occam’s Razor) to count multiples of a base pattern’s period, unless those multiples

extend beyond the support of the base pattern.

Although the use of closed subgraphs reduces much of the redundancy associated with

the output of an Apriori style algorithm, the basic definition of a PSE still retains some

of it. To eliminate all such redundancy, we pose our problem as that of mining a minimal

set of patterns to cover all periodic occurrences of all periodic subgraphs. Keeping in line

with the principle of parsimony, this eliminates patterns with periods that are multiples of

a base period, unless they convey some new information about a periodic occurrence. In

order to describe this concept formally, we first define the notion of subsumption of PSEs.

Definition 3.2.3. (Subsumption) For two periodic subgraphs F1 and F2 with respective

periodic support sets SP,1 = (i1, p1, s1) and SP,2 = (i2, p2, s2), 〈F1, SP,1〉 completely contains

or subsumes 〈F2, SP,2〉 if all of the following conditions hold:

1. F2 ⊆ F1

2. ti2 ≥ ti1

3. ti2+p2·(s2−1) ≤ ti1+p1·(s1−1)
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4. p2 = k · p1 for some integer k > 0

5. ti,2 = ti,1 + l · p1 for some integer l ≥ 0

We prove that all conditions listed above are necessary for subsumption. Condition

1 is trivially required to ensure that no information is lost. Let f1(l) = ti,1 + l · p1 and

f2(l) = ti,2 + l · p2 be the lth occurrence of F1 and F2 respectively, for some integer l.

For subsumption, we require that the support set SP,2 is completely contained within the

support set SP,1. Conditions 2 and 3 require that the support set of of F2 is contained within

the bounds of the support set of F1, although they could be of different phase offsets and

not overlapping at all, or partially overlapping but of different periods. Condition 4 requires

that the period of F ′ is an integer multiple of F , and condition 5 requires that F1 and F2

have compatible phase offsets, which ensures that they overlap. This is handled by requiring

that the first occurrence of F2 overlap with any occurrence of F1. Thus, ti,2 = f1(l), which

yields the final condition ti,2 = ti,1 + l · p1.

Definition 3.2.4. (Parsimonious PSE) A PSE that is not subsumed by any another

PSE is a parsimonious periodic subgraph embedding (PPSE).

As an example to motivate the mining of PPSEs, consider a system in which all the

nodes only interact periodically with either period 2 or 4, starting at arbitrary times and

continuing for an arbitrary number of repetitions. Suppose that we want to discover these

unknown periodicities by observing the system for a period of time. With non-parsimonious

PSEs, duplicates of each true periodic pattern would be reported for a fixed number of



117

multiples of either 2 or 4, depending the specific pattern. If we were to plot a histogram

of the periodicities of all mined patterns, we would see various artifacts from the higher

order periodicities, which could obscure the true periodicities. On the other hand, with

parsimonious PSEs and enough data, the true periodicities of 2 and 4 would, with high

probability, be the most prominent peaks.

Definition 3.2.5 (Periodic Subgraph Mining Problem). Given a dynamic network G and a

minimum support threshold σ ≥ 2, the Periodic Subgraph Mining problem is to list

all parsimonious periodic subgraphs embeddings in G that satisfy the minimum support.

3.2.3 Practical Considerations

3.2.3.1 Handling noise by smoothing

Since real-world networks are unlikely to always contain perfectly periodic patterns, we

use smoothing as a mechanism for accommodating imperfect periodicity. Given a user-

defined smoothing parameter S ≥ 1, we transform the dynamic network by considering a

sliding window over its timesteps. In other words, we transform the dynamic network G in

the following manner1, where Gi ∈ G:

G′ = 〈G1 ∪ ... ∪GS , G2 ∪ ... ∪GS+1, ...〉

1Blank timesteps are appended to the beginning and end of the dynamic network as necessary
to handle boundary conditions.
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In addition, the following two conditions handle the removal of artifacts introduced by the

smoothing process.

1. The minimum period Pmin is set to S.

2. PSEs of the same subgraph that share the same period and differ in their starting

positions by at most S − 1 timesteps are merged. In other words, the PSE with the

highest support is retained. This can be done as a post-processing step or incorporated

into the mining algorithm itself.

By introducing this smoothing mechanism, we allow a window of timesteps within which

the order of events does not matter. No smoothing is performed at S = 1.

3.2.3.2 Purity: a measure for ranking periodic subgraphs

A periodically recurring subgraph is not necessarily representative of an interaction

pattern that occurs only periodically, as shown in Figure 17. The purity measure expresses

how likely it is that a periodic subgraph embedding occurs only periodically over its support

set.

Definition 3.2.6. ( Purity) Given a periodic subgraph embedding 〈F, SP 〉 with period

p, starting at timestep ti and with support s = |〈ti, ..., tj〉|, the purity of F is the ratio of

its periodic support to its total support in the timestep range [ti, tj ].

purity(F ) =
s

|{t : F ⊆ Gt, ti ≤ t ≤ tj}|
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Figure 17: A periodic subgraph embedding (bold) with non-periodic occurrences. The
purity of this periodic subgraph is 3/5, whereas its average purity is 1

2(35 + 3
7) ∼ 0.51.

It is sometimes advantageous to define the purity of a subgraph as the average purity

of its edges. Doing so is more representative of the temporal characteristics of the entire

subgraph. We use the term ‘purity’ to refer to average purity for the remainder of this

chapter. Figure 17 shows an example of the purity measure.

Definition 3.2.7. ( Average Purity) The average purity of a subgraph F = (V,E) is

the average purity of all of its edges.

avgPurity(F ) =
1

|E|
∑

e∈E

purity(e)

3.3 Related Work

Searching for periodicity and periodic patterns have appeared in different contexts in

data mining. In this section, we review relevant literature concerning periodic pattern

mining, as well as the closely related problem of frequent pattern mining. We omit certain

earlier antecedents to this line of research, such as mining cyclic association rules (Özden

et al., 1998) and frequent sequential patterns (Agrawal and Srikant, 1995), as they are not

directly relevant. Also omitted for the same reason are periodic pattern mining approaches
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that require or assume that the entire input is at least approximately periodic, including

techniques that use Fast Fourier Transforms (Elfeky et al., 2005a; Elfeky et al., 2005b).

Most algorithms for mining periodic patterns deal with unstructured data such as a

sequence or multiple, aligned sequences. In the most general formulation of the problem,

the input consists of a sequence of symbols sets S = 〈a1, ..., aT 〉, where each symbol set ai

is drawn from a finite universal set L. A pattern is a sequence P = 〈b1, ..., bp〉 of length

p, where p is the period of the pattern and each bi ⊆ L ∪ {∗}. The ‘*’ character is a wild

card that matches any symbol. Less general versions consider only a single sequence as

the input, so each ai ∈ L and bi ∈ L ∪ {∗}. The pattern mining problem is to extract all

such patterns from the input sequence, subject to constraints such as a minimum support.

Algorithms for this task are generally variants of the classic Apriori algorithm of Agrawal

and Srikant (Agrawal and Srikant, 1994), in which larger patterns are iteratively built

from smaller ones. Note that the definition of a periodic pattern in this line of research

is essentially a sequence with wildcards, whereas our definition is closer to concepts from

frequent pattern mining.

Han et al. introduced one of the first algorithms to mine partial periodic patterns

in multidimensional sequences (Han et al., 1999). They adopt an Apriori-inspired search

through pattern space using a novel prefix-based data structure called a max-subpattern

tree. Ma and Hellerstein (Ma and Hellerstein, 2001) propose a similar, Apriori-inspired

approach consisting of two level-wise algorithms for mining periodic patterns in the presence
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of both partial periodicity as well as imperfect periodicity. They also propose an interesting

statistical (as opposed to combinatorial) foundation for defining periodicity.

Yang et al. (Yang et al., 2001; Yang et al., 2002) proposed another level-wise mining

algorithm for detecting ‘surprising’ periodic patterns, i.e. those judged to be interesting

based on deviation from their expected frequency. This is intended to overcome limitations

of using the support of a pattern as the sole measure of its worth. They devise two variants

of information gain as measures of interest: bounded information gain (Yang et al., 2001)

and generalized information gain (Yang et al., 2002), the second of which obeys the triangle

inequality. However, a number of independence assumptions are made, such as the proba-

bility of occurrence of an event being the same at any point in time, and these might not

hold in dynamic networks.

Yang et al. (Yang et al., 2003) propose a level-wise mining algorithm that allows im-

perfect (or ‘asynchronous’) periodic patterns to be discovered. They do this by introduc-

ing two user-defined parameters into the mining process to specify the minimum number

of repetitions of a pattern and the maximum amount of disruption allowed. Huang and

Chang (Huang and Chang, 2005) build on this in their description of SMCA, a suite of four

algorithms for mining periodic patterns (Huang and Chang, 2005). The fundamental idea

is still to conduct a level-wise search through pattern space, but augmented with more ef-

ficient data structures and algorithms than earlier approaches. Each algorithm enumerates

more complex patterns from the output of an earlier stage.
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Finally, our work is inspired by frequent pattern mining, which is concerned with the

discovery of patterns that occur more frequently than a user-defined threshold. A rela-

tively young offshoot of this line of research is frequent subgraph mining (Inokuchi et al.,

2000; Kuramochi and Karypis, 2001), which was originally devised to search for common

structures in databases of chemical compounds represented as graphs. A detailed overview

of this field is beyond the scope of this thesis, but may be found in (Han et al., 2007)

and (Cheng et al., 2008). There are, however, a number of recent complexity results for

frequent pattern mining that are relevant. Specifically, given a set of maximal frequent

itemsets, Boros et al. (Boros et al., 2002) show that it is NP-complete to decide if there

is a further maximal frequent itemset. Yang (Yang, 2004) shows that different variants

of maximal frequent pattern mining, including itemsets and subgraphs with unique vertex

labels, are either #P-hard or #P-complete in terms of counting the number of satisfying

solutions. Thus, many variants of frequent pattern mining are computationally intractable

in the worst case.

3.4 Complexity Analysis of the Mining Problem

We now analyze the computational complexity of the periodic subgraph mining problem

as defined in Section 3.2. In order to do this, we derive an exact upper bound on the number

of PSEs that can exist in any dynamic network of T timesteps. We prove that this upper

bound is a polynomial function of the number of timesteps and the minimum support value.
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We show that the upper bound is sharp by constructing a ‘worst-case’ dynamic network.1

The proof leads to the conclusion that mining all closed PSEs can be done in polynomial

time in the size of the input, proving that the mining (enumeration) problem is in the

complexity class P, when the graphs have unique vertex labels. This is in contrast to the

more general frequent subgraph mining problem, which is NP-hard for enumeration and

#P-complete for counting, even with unique vertex labels (Yang, 2004; Boros et al., 2002).

We take advantage of the intrinsic polynomial complexity of the problem to design an

efficient single-pass mining algorithm in Section 3.5. We do not include smoothing in the

following analysis, and purely algebraic manipulations are omitted for brevity.

Theorem 3.4.1. Periodic Subgraph Mining in dynamic networks is in P.

To prove Theorem 3.4.1, we first construct a class of worst-case dynamic networks and

show that any member of this class has the maximum possible number of PSEs. We utilize

the concept of a projection of a discrete time sequence to count the maximum number of

PSEs in this class of dynamic networks (Elfeky et al., 2005a).2

Definition 3.4.1. Given a dynamic network G, a projection πm,p of G is a subsequence of

graphs

πm,p = 〈G1+m, G1+m+p, G1+m+2p, ...〉,

1An alternate version of this proof in terms of maximal subgraphs, but with the same outcome,
can be found in (Lahiri and Berger-Wolf, 2008).

2In principle, any combinatorial technique can be used to count the number of PSEs. Projections
are convenient for Definition 3.2.2 and some extensions to it.
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where p is the period of the projection and 0 ≤ m < p is the phase offset.

It should be clear from the definitions of periodicity and projection that any periodic

support set at minimum support σ is embedded in at least σ consecutive positions of some

projection πm,p.

Proposition 3.4.1. Let F be the maximal common subgraph of any s ≥ σ consecutive

positions of any projection πm,p. If F is not empty, then it is a periodic subgraph and the

s consecutive timesteps from πm,p are part of a PSE for F .

Proof. A non-empty maximal common subgraph F of any s ≥ σ consecutive positions

implies that F is maximal over a support set of at least σ periodic timesteps, which in turn

might or might not be temporally maximal for F . However, in either case, the s timesteps

are part of some valid periodic support set of size at least σ. This is a sufficient condition

to satisfy Definition 3.2.2, and thus F is a periodic subgraph.

Corollary 3.4.1. In the worst computational complexity case for mining periodic subgraph

embeddings in a dynamic network, the maximal common subgraph of every s ≥ σ consecutive

positions of every projection is not empty and contains a unique PSE.

Proof. Clearly, if every periodic subset of s ≥ σ timesteps of the dynamic network contains

a unique maximal common subgraph, then they all need to be enumerated by any mining

algorithm and it is indeed the worst case input for a periodic subgraph mining problem.

We now show that it is attainable using an explicit construction. We place a different edge

in each s ≥ σ consecutive positions of every projection to ensure that each edge is part of
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Figure 18: An example of a worst case dynamic network for mining PSEs at σ = 3.

a unique periodic subgraph embedding. Let edge e be created in this way with support

set SP in some πm,p. Considering only SP , we know that it is temporally maximal for the

edge e because e does not exist in any other timesteps. Furthermore, the maximal common

subgraph of SP is non-empty because it contains at least the edge e. Thus, each edge is

part of a unique PSE whose support set is SP . Since a different edge was placed in every

s ≥ σ consecutive positions of every projection, the number of PSEs is equal to the number

of edges created. No additional PSEs can be created since every permissible support set,

i.e. with support greater than σ, is already part of a unique PSE. Therefore, the described

structure is a worst case instance for its size.

Figure 18 shows an example construction of such a worst-case dynamic network with 12

PSEs at σ = 3. The next step is to explicitly calculate the upper bound on the number of

PSEs in the worst-case network instances. Following from Corollary 3.4.1, we only need to

count the number of s ≥ σ consecutive positions of every projection to derive this bound.

In order to do this, we first state the bounds on several other parameters.
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Proposition 3.4.2. In a dynamic network with T timesteps, the maximum period of any

periodic subgraph with support at least σ is P = ⌊(T − 1)/(σ − 1)⌋.

Proposition 3.4.3. In a dynamic network with T timesteps, the length of any projection

is |πm,p| = ⌈(T −m)/p⌉.

The proofs of the Propositions 3.4.2 and 3.4.3 are straightforward and similar to those

in (Elfeky et al., 2005a). Given the above expressions, we now derive an exact bound by

construction.

Theorem 3.4.2. In a dynamic network with T timesteps, there are at most O(T 2 ln T
σ )

closed PSEs at minimum support σ.

Proof. From Corollary 3.4.1, the maximum number of PSEs possible in a dynamic network

at minimum support σ is equal to the number of s ≥ σ length windows over all possible

projections of the network. For a given projection πm,p and value of s, it is clear that the

number of length-s windows over the projection is |πm,p| − s+ 1, where |πm,p| is the length

of the projection defined in Proposition 3.4.3. Thus, for a given value of s, the number of

length-s windows over all projections can be obtained by substituting the expressions from

Propositions 3.4.2 and 3.4.3:

⌊T−1
s−1 ⌋
∑

p=1

p−1
∑

m=0

(⌈

T −m

p

⌉

− s + 1

)

We have replaced σ with s in the expression for the maximum period of a pattern

from Proposition 3.4.2, since we only want projections which contain at least one length-s
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window for any s. This constitutes the outer summation; the inner summation is over all

possible phase offset values m for a given period p. Finally, the term inside the summation

is the number of length-s windows in any projection, where |πm,p| has been substituted

from Proposition 3.4.3. We now sum this expression over all possible values of s, which

run from σ to T , and relax the floor and ceiling expressions for an asymptotic closed form

approximation.

T
∑

s=σ

⌊T−1
s−1 ⌋
∑

p=1

p−1
∑

m=0

(⌈

T −m

p

⌉

− s + 1

)

(3.1)

∼
T
∑

s=σ

T−1
s−1
∑

p=1

p−1
∑

m=0

(

T −m + p

p
− s + 1

)

(3.2)

Expression Equation 3.2 algebraically simplifies to an expression that is O(T 2 ·H(T−1
σ−1 )),

where H(n) =
∑n

k=1
1
k is the nth harmonic number, asymptotically approximated by lnn.

Thus, the number of PSEs at minimum support σ is bounded asymptotically by O(T 2 ln T
σ )

(and exactly by Equation Equation 3.1).

Proof of Theorem 1. To finally prove Theorem 3.4.1, consider an algorithm that outputs

the maximal common subgraph of every σ length window of every projection. Since the

maximal common subgraph of a set of graphs with unique vertex labels can be found

in time O(V + E) (Dickinson et al., 2003), in the worst case, this results in O(T 2 ln T
σ )

periodic ‘fragments’ computed in Θ((V +E)T 2 ln T
σ ) time. Every pair of periodic fragments

is then compared and merged if they represent overlapping embeddings of the same periodic

subgraph, in time O((V + E)(T 2 ln T
σ )2), resulting in all PSEs. Another run over pairs of
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PSEs can eliminate all non parsimonious PSEs, resulting in an overall time complexity of

O((V +E)T 4(ln T
σ )2). Thus, the mining problem is in P, and the exact bound on the number

of closed PSEs is given in summation form in Theorem 3.4.2.

3.5 The Algorithm

We now present PSEMiner1, our algorithm for mining all parsimonious periodic sub-

graph embeddings (PPSEs) in a dynamic network. We start by describing the most ba-

sic form of the algorithm, which mines closed (not just parsimonious) periodic subgraph

embeddings, and proving its correctness and complexity. We then describe some simple

optimizations to the basic algorithm that allow it to output only PPSEs and also improve

its efficiency in practice.

PSEMiner is based on the following idea: as each timestep of the dynamic network is

read, we maintain a list of all periodic subgraph embeddings seen up to timestep t. This list

is maintained in a simple data structure called a pattern tree, which also tracks subgraphs

that might become periodic at some point in the future. Once PSEs cease to be periodic,

they are flushed from the tree and written to the output stream if they satisfy certain

conditions like the minimum support. As each timestep Gt is read from the data stream,

the pattern tree is updated with the new information, which could involve modifying, adding

and deleting tree nodes. The complexity analysis in Section 3.4 allows us to prove worst-

case computational time and space bounds that are polynomial in the size of the input.

1Periodic Subgraph Embedding Miner
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We describe the algorithm, its parameters, data structures and a proof of correctness in

the following five sections. In Section 3.5.6, we describe optimizations that complete the

description of the algorithm.

3.5.1 Parameters

Our algorithm is a single-pass, polynomial time and space algorithm for mining all closed

periodic subgraph embeddings in a dynamic network. It does not require any parameters,

but optionally accepts the following:

1. Minimum support threshold σ ≥ 2 (default: 2).

2. Minimum period Pmin (default: 1).

3. Maximum period Pmax (default: unrestricted).

4. Smoothing timesteps S ≥ 1 (default: 1).

When the Pmax parameter is restricted, our algorithm functions as an online algorithm,

retaining only the parts of the dataset in memory that it requires to calculate periodicities.

There is a natural bound on the maximum period of mined patterns if the number of

timesteps T is finite and known (see Proposition 3.4.2). However, in many situations this

information is not available or relevant, such as in streaming sensor data. In such cases, an

unrestricted maximum period value places a large computational burden on the algorithm,

and requires that the entire dataset be retained in memory. This is because at any timestep

t, any previously observed timestep t′ < t could contain the initial occurrence of a periodic

subgraph whose second occurrence is at timestep t. Testing for this situation requires all
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previously seen timesteps to be retained in memory, either explicitly or in some compressed

form. The optional Pmax parameter limits the maximum period of mined patterns, and

thus eliminates the need to retain previously seen timesteps beyond a certain history.

The default parameters mine a complete set of periodic subgraphs without any smooth-

ing, although in practice, only σ values of 3 or more are meaningful. The output of the

algorithm is a set of closed parsimonious periodic subgraphs embeddings that satisfy the

minimum support. Each embedding is written to the output stream as soon as the last

possible occurrence of the subgraph has been encountered, or when the input stream has

been exhausted.

3.5.2 Data Structures

As the algorithm scans the input stream, it maintains three primary data structures to

track PSEs: a pattern tree, a subgraph hash map, and an optional timeline list to increase

efficiency. An auxiliary data structure, called a descriptor, is used as a compact repre-

sentation of a periodic support set. We refer to nodes in the pattern tree as treenodes to

distinguish them from nodes (vertices) in the dynamic network or in a periodic subgraph.

Each treenode N is associated with a single periodic subgraph F and a set of descriptors

that represent PSEs of F . We use the notation ‘treenode N/F ’ to refer to a treenode N

that represents subgraph F .

3.5.2.1 Pattern Tree, Subgraph Hash Map and Timeline List

The tree structure represents a subgraph relationship between periodic subgraphs. The

structure of the pattern tree is subject to a single constraint: with the exception of the



131

special root node, all descendants of a treenode N/F are associated with proper subgraphs

of F , but not all subgraphs of F are necessarily its descendants in the tree. This property

allows efficient traversal of the tree by the mining algorithm, and also allows the tree to

be built and manipulated quickly and represented using very little space.1 It also allows

efficient traversal by virtue of the fact that if F is not observed at a given timestep for

treenode N/F , then neither are the subgraphs represented by N ’s descendants (except for

the root node). Direct access to treenodes is also required, which is achieved by using a hash

map to associate periodic subgraphs with their corresponding treenode. This can be done

efficiently, as described in Property 3.1.4 of the set representation of dynamic networks.

The timeline list is an optional component that links treenodes to the future timesteps at

which they are expected to appear. Its use is discussed in Section 3.5.6.

3.5.2.2 Treenodes

Each treenode N/F contains a list of descriptors {D1, ..., Dn}, one for each observed

PSE of F . In addition, each treenode maintains a list of periods and phases of all live

descriptors (see below), which is used by the tree update algorithm. Querying, adding to,

and removing descriptors from this list are the primary operations on a treenode.

1An alternative to the tree representation would be to construct a full subgraph lattice (Carpineto
and Romano, 2004), with a corresponding increase in time and space complexity. Whether lattices
are more efficient given the typical sparsity of dynamic networks is a question for future research.
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3.5.2.3 Descriptors

A descriptor D is the abbreviated representation of a periodic support set. It is asso-

ciated with a treenode N/F and defines a unique PSE for F . It is formally described as

a triple, since it represents a periodic support set SP = (i, p, s). The last element in the

support set is defined as tj = ti + p · (s− 1) and the next expected timestep as tn = tj + p.

Since descriptors are created, updated, and deleted as the input stream is read, the following

definition describes the different states in which a descriptor could be at any given time.

Definition 3.5.1. (Descriptor states) At timestep t, a descriptor D for a subgraph F is

live if tn > t or if tn = t and F is present at Gt. A descriptor that is not live is not currently

exhibiting periodic behavior; it cannot change state again once it is not live. A descriptor

where ti = tj is a special case called an anchor descriptor, as it does not represent a periodic

support set but could potentially become one if the associated subgraph F is observed at a

future timestep. An anchor descriptor is defined to have a period of 0. An anchor descriptor

is always live, unless Pmax is defined and t− ti > Pmax, in which case the anchor can never

lead to a valid PSE with period at most Pmax, and is no longer needed.

3.5.3 Tree Update Algorithm

We now describe the update algorithm for the pattern tree, which is the core of the

mining process. It is called once for each timestep that is read from the input. Starting

with an initial pattern tree with an empty root treenode, at timestep t the algorithm

traverses the pattern tree in a breadth-first search (BFS) to update treenodes with the new

information contained in Gt. For each Gt, we are only interested in treenodes which might
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be affected by the new information. This excludes any subgraph F which has an empty

maximal common subgraph with Gt. In most cases, this process eliminates some branches

of the pattern tree from the BFS traversal. At each treenode N/F where F has some part

in common with Gt, we update descriptors at N in a manner described below. We end

each tree update by ensuring that a treenode for Gt in its entirety exists in the tree with

an anchor descriptor for timestep t. This accounts for the possibility that Gt in its entirety

is the first occurrence of a (future) periodic subgraph. If such a treenode does not exist, it

is created at a location which does not violate the subgraph property of the tree, such as

the root.

During the breadth-first traversal of the tree, one of the following three conditions holds

at each treenode N/F . Let C = F ∩Gt be the maximal common subgraph of Gt and F .

1. Update descriptors: If F ⊆ Gt, i.e. if F = C, then F has appeared in its entirety

at timestep t. Let D be any descriptor in N and tn = tj + p be the next expected

timestep for D.

(a) If tn = t, then D has appeared where it was expected. Timestep t is added to

D’s support to ensure temporal maximality.

(b) If tn < t, then D has not appeared when expected and is thus no longer live. It

is written to the output stream if its support is greater than or equal to σ, and

removed from the tree.

(c) If tn > t, then nothing is done.
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(d) If p = 0, then D is an anchor descriptor. Given that timestep t is the second

occurrence of F , a new descriptor D′ is spawned with period p′ = t − ti and

phase offset m′ = (ti − 1) mod p′. If N does not contain a live descriptor with

the same period and phase offset, D′ is added to the list of descriptors at N .

2. Propagate descriptors: If C 6= ∅ and the condition above does not hold, then a sub-

graph C of F is present at timestep t, instead of F in its entirety. This happens, for

example, when a formerly periodic subgraph F fractures into a smaller subgraph C

that continues F ’s periodic behavior. If a treenode for C does not already exist in

the tree, determined using the subgraph hash map, it is created as a child of N (to

satisfy the subgraph relationship). Let D be any descriptor at N . If tn = t, then D

represents a PSE which subgraph C must inherit and continue. The treenode for C

receives a copy of D, if a live descriptor of the same period and phase offset does not

already exist. The pattern < F,D > is written to the output stream if the support

of D is greater than or equal to σ, and then D is removed from treenode N .

3. Dead subtree: If C = ∅, then Gt and F have no common subgraph, and no descriptors

at N are directly affected by the observation of Gt. Furthermore, no treenode that is

a descendant of N will have any common subgraph with Gt either, since they are all

subgraphs of F . The subtree rooted at N is therefore eliminated from the rest of the

tree traversal.
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Algorithm 1 UpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: C ← Gt ∩N
5: if C is not empty then
6: if N ⊆ Gt then
7: UpdateDescriptors(N)
8: else
9: W ← FindNode(N) or NewNode(N,C)
10: PropagateDescriptors(N,W )
11: end if
12: push(Q, children(N))
13: end if
14: end while
15: W ← FindNode(Gt) or NewNode(root, Gt)
16: Add anchor descriptor for Gt to W .

Figure 19 shows the pattern tree at each timestep during the execution of the algorithm

on the network from Figure 16. For clarity, we have described a very basic version of the

algorithm. Two notable aspects of this algorithm are (1) that it outputs all PSEs, which

are a superset of all PPSEs, and (2) it can dynamically calculate the purity measure. Non-

parsimonious PSEs can be post-processed out of the output, but in Section 3.5.6, we show

how this can be accomplished dynamically.

3.5.4 Correctness

The pattern tree is intended to hold all PSEs seen up to timestep t. We prove by

induction that this consistent state holds at any point during the execution of the algorithm.

We define a consistent state for the pattern tree as the following four conditions.
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Figure 19: The pattern tree at each timestep for the dynamic network shown in Figure 16,
considering only edges for brevity.

Definition 3.5.2. (Pattern Tree Consistency Conditions) The pattern tree is in a

consistent state if the following four conditions are met:

1. The subgraph property of the pattern tree holds, i.e. all descendants of a treenode

N/subgraph F contain subgraphs that are proper subgraphs of F .

2. All descriptors in the pattern tree are unique, i.e. no two descriptors D1 and D2

anywhere in the tree share the same subgraph and the same support set.

3. All PSEs with support SP ≥ 2 encountered in the data stream so far have a descriptor

(and thus a treenode) in the tree.

4. All non-anchor descriptors represent PSEs that are closed up to timestep t, i.e. for a

descriptor D in a treenode N/subgraph F , F is the maximal common subgraph of the

support set described by D, and the support set is temporally maximal at timestep t

as per Definition 3.2.1.
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If the tree is in a consistent state at timestep t, then the remaining output up to

timestep t can be obtained by traversing the tree once and writing every subgraph/descriptor

pair where the support of the PSE is |SP | ≥ σ. The tree is initially empty except for a

dummy root node. It is therefore consistent because the four consistency conditions are

vacuously true. For the inductive hypothesis, assume that the pattern tree is consistent

after processing timestep Gt−1. Then after processing Gt, we show below that the tree is

still in a consistent state, thus proving that the tree is in a consistent state during and at

the end of the execution of the mining algorithm. The following is the statement and proof

of the inductive step.

Theorem 3.5.1. If the pattern tree is in a consistent state after processing Gt−1, then the

pattern tree is also in a consistent state after using Algorithm 1 to process Gt.

Proof. On reading Gt from the input stream, the first two consistency conditions are not

violated because no new subgraphs or descriptors have been added to the tree. Conditions 3

and 4, on the other hand, might be violated because Gt could potentially contain a previ-

ously unseen PSE, violating condition 3, or require that an existing one have its support

set extended to include t, violating condition 4. Therefore, we start by focusing on events

that would violate the latter two consistency conditions, while showing that the first two

remain satisfied during processing. We describe each event in turn and how the consistency

of the tree is violated, as well as the correctness of the actions taken to restore consistency.

The following is an exhaustive list of such events, along with the action that the algorithm

takes:
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Case 1: Gt contains the first occurrence of a new PSE, violating condition 3; an anchor

descriptor starting at timestep t is added to a treenode for Gt in its entirety.

Case 2: Gt contains the nth occurrence of a new PSE, where n > 1 and prior occur-

rences were contained within some other PSE, violating condition 3; the Propagat-

eDescriptors function is called. When n = 1, we have case 1 above.

Case 3: Gt contains the nth occurrence of an already existing PSE, where n > 1, violating

condition 4; the UpdateDescriptors function is called. Timestep t cannot be the

first occurrence for an existing PSE, by definition.

Case 1:

The first possibility is that Gt could contain the first occurrence of a new PSE. Since we

have no way of knowing the future, we always assume that the entire graph Gt is going

to become a periodic subgraph in the future with timestep t as its first timestep.1 In Al-

gorithm 1, a treenode W is added for Gt at the root if one does not already exist in the

tree, and an anchor descriptor starting at t is added to W . Adding W at the root is a

simple way to ensure that condition 1 is never violated. The descriptor is guaranteed to be

unique, because no other PSE of Gt will have started at timestep t prior to Gt having been

observed, and therefore condition 2 is not violated. If we are correct about the assumption

that timestep t is the first occurrence of a new PSE for Gt, then we have ‘presciently’ added

a descriptor and treenode for it at the correct time, and ensured that condition 3 is not

1Incidentally, there is at least one dynamic network where each timestep contains the first occur-
rence of a new PSE – the worst-case construction from Section 3.4.
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violated. On the other hand, if Gt never occurs again, then its treenode will only contain

an anchor descriptor, which is exempt from condition 4. Therefore, case 1 no longer causes

the tree to be inconsistent.

Case 2:

Suppose that Gt is the nth occurrence of a new PSE, for n > 1. This happens when a

subgraph stops exhibiting periodic behavior, but a smaller portion of it continues to do so.

The treenode for the smaller subgraph might therefore need to ‘inherit’ some descriptors

from the treenode of the larger subgraph. For each treenode N/F , case 2 arises when

F∩Gt 6= ∅ except when F ⊆ Gt (this exception is handled in the next case). Let C = F∩Gt,

the maximal common subgraph of F and Gt. Let W be the treenode for C, which is created

in the tree (at a position that does not violate condition 1) if it does not already exist.

We now need to copy descriptors where tj + p = t from N to W , since these descrip-

tors would have been updated if F had been observed in its entirety. Let D be one such

descriptor. D is now no longer live for N/F because it has failed to appear in its entirety

at timestep t. The propagation process transfers D to W if W does not already have a live

descriptor of the same period and phase offset D and an earlier starting position. Since

treenodes N and W represent different subgraphs, copying D from N to W does not violate

condition 2. Furthermore, since D was temporally maximal before, it is again temporally

maximal with the addition of t to its support set. This handles conditions 4 and 3, and
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case 2 no longer causes the tree to be inconsistent.

Case 3:

Finally, we handle the case that Gt is the nth occurrence of an existing PSE, for n > 1.

This happens when a treenode N/F has F ⊆ Gt, which means that F has appeared in its

entirety and its descriptors need to be updated. The update process scans each descriptor

D in treenode N . If D is next expected at timestep t, then t is added to its support set by

setting tj = t. This satisfied consistency condition 4. If D is no longer exhibiting periodic

behavior, i.e. if tj + p < t, then D is flushed to the output stream if appropriate and then

deleted. The other conditions are not violated. The final case is therefore handled correctly,

and the pattern tree is again in a consistent state.

We have inductively shown that Algorithm 1 results in a consistent tree after processing

each timestep Gt in increasing order of t. This proves the correctness of the algorithm.

3.5.5 Time and Space Complexity

Given that the tree consistency conditions hold, the number of descriptors (and therefore

nodes) in the tree at timestep T is bounded by Theorem 3.4.2 at σ = 2. As each timestep

is read, the tree is traversed once. When descriptors are created or propagated, we ensure

that at most one live descriptor exists at each treenode for a given period and phase offset.

If the list of periods and phase offsets of live descriptors in the treenode are represented as

sparse two-dimensional arrays, then lookup can be performed efficiently in constant time

with O(P 2
max) or O(T 2) space complexity to hold the arrays. Thus, the worst-case time com-
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plexity of the algorithm involves traversing each descriptor in the tree once for each timestep

and calculating the maximal common subgraph at each treenode. From Property 3.1.1, the

maximal common subgraph of two graphs can be calculated in time O(V +E). This yields

a total time complexity of O((V + E)T 3 lnT ) when Pmax is not specified. When Pmax is

specified, the range of allowable periods is bounded in Theorem 3.4.2 and the maximum

number of patterns can drop very significantly. The worst-case space complexity of our

algorithm is O((V + E + P 2
max)T 2 lnT ) when Pmax is specified. In practice, however, the

tree size is usually several orders of magnitude smaller than the worst-case bound, as we

will demonstrate.

3.5.6 Extensions to the Basic Algorithm

We have described a basic version of the mining algorithm in Section 3.5.3. A number

of algorithmic refinements are possible to increase efficiency, but at the cost of conceptual

simplicity. We briefly describe some of these refinements below.

3.5.6.1 Mining Parsimonious PSEs

The most important enhancement is to make the algorithm dynamically output only

parsimonious PSEs. Recall the subsumption conditions from Definition 3.2.3. A simple way

to modify Algorithm 1 to only output parsimonious PSEs is by adding an indicator bit to

each descriptor to indicate subsumption. This bit is initially cleared when the descriptor

is created. When any descriptor D from treenode N/F is flushed, its subsumed bit is first

checked. If it is cleared, then D is compared to all other live descriptors at N . If D is

subsumed by another descriptor, it is not written to the output. On the other hand, if D
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subsumes (as of timestep t) some other descriptor D′, the subsumed bit for D′ is set. If the

support of D′ increases in the future, its subsumed bit is cleared since Condition 3 from

Definition 3.2.3 is no longer true. However, if its support does not increase, then all the

conditions from Definition 3.2.3 hold and D′ is not parsimonious. It will not be flushed

when the cessation of its periodic behavior is finally confirmed.

3.5.6.2 Sorted Descriptor List

The list of descriptors at each node can be stored sorted by the next expected timestep

of each descriptor. At timestep t, only descriptors which are expected at or before t will be

examined, in addition to at most one descriptor that is expected after timestep t. This cuts

down on the number of descriptors that need to be examined during each tree update, at

the computational cost of having to sort the list of descriptors after each update. Since the

number of descriptors per treenode is generally not very large, the computational overhead

is minimal in practice.

3.5.6.3 Lazy Tree Updates

In practice, the algorithm spends most of its running time calculating intersections of

integer sets (line 7 in Algorithm 1). Although the maximum common subgraph of two graphs

is calculated in time linear in the number of vertices and edges, the size of the graphs results

in a relatively expensive intersection computation. The sparsity of the network generally

results in a relatively small number of treenodes, which means that many such intersections

between large sets must be performed. Thus, to improve the practical efficiency of the

algorithm, we can delay calculating intersections until it is absolutely necessary. This results
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in the lazy-intersection tree update algorithm shown in Algorithm 2. The tradeoff is that

the total support of patterns, and therefore the purity measure, cannot be dynamically

calculated.

3.5.6.4 Using a Timeline to Trim the Tree

The timeline associates each future timestep with a list of treenodes that have at least one

descriptor expected at that timestep. It can be dynamically updated at an insignificant cost

(constant or logarithmic) once per treenode update, and stored in space linear in the number

of treenodes. After the tree update for timestep t, all treenodes that are still associated

with timestep t are guaranteed not to have been visited during the tree update, and have

at least one descriptor which is no longer periodic. These treenodes can then be visited

and the invalid descriptors removed, in time proportional to the number of descriptors to

be removed. Thus, at the end of each tree update operation, the treenode only contains

descriptors that are live at the next timestep. This ensures that the pattern tree contains

a minimal number of descriptors and treenodes at any given timestep.

3.6 Experimental Evaluation

We use four real-world dynamic social networks to evaluate our algorithm as well as

some characteristics and applications of periodic subgraph mining. We also use artificial

data to compare the performance of our algorithm with that of SMCA (Huang and Chang,

2005), a periodic pattern mining algorithm that generates periodic patterns in a level-wise

search similar to Apriori and without closed or parsimonious considerations. SMCA is a

four-phase algorithm and we only use the first two phases (SPMiner and MPMiner), since
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Algorithm 2 LazyUpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: lazy ← true
5: while lazy = true do
6: D ← next descriptor at N
7: next ← last(D) + period(D)
8: if D is an anchor or next = T then
9: lazy ← false
10: else
11: if next < T then
12: flush D to output and delete
13: else
14: break
15: end if
16: end if
17: end while
18: if lazy = false then
19: C ← Gt ∩N
20: if C is not empty then
21: if N ⊆ Gt then
22: UpdateDescriptors(N)
23: else
24: W ← FindNode(N) or NewNode(N,C)
25: PropagateDescriptors(N,W )
26: end if
27: push(Q, children(N))
28: end if
29: else
30: push(Q, children(N))
31: end if
32: end while
33: W ← FindNode(Gt) or NewNode(root, Gt)
34: Add anchor descriptor for Gt to W .
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their combined functionality is comparable to our algorithm.1 We first report results on the

comparison with SMCA on synthetic data, before moving on to evaluating our algorithm

on real dynamic networks.

We implemented our algorithm in C++, incorporating all the optimizations described in

Section 3.5.6. The subgraph hash map was implemented using the Google dense_hash_map

library2, optimized for speed over memory usage. The experiments with synthetic data were

run on a dual-core Intel Pentium D system running at 3.2 GHz with 3 GB of RAM and Linux

kernel 2.6.28. The experiments with real data were run on a quad-core Intel Xeon server

running at 2.6 GHz with 24 GB of RAM and Linux kernel 2.6.22. In all cases, computation

time is reported as the sum of the user (computation) and kernel (I/O, etc.) CPU time

reported by the Linux getrusage() system call. Memory usage is the maximum resident

set size reported by the Linux proc filesystem. The SPMiner and MPMiner components of

the SMCA algorithm were implemented in C++ according to the pseudocode in (Huang and

Chang, 2005), and use the same input, timing and output mechanisms as our algorithm.3

1The functionality is comparable in terms of the stated goal of the algorithm only, which is to
mine periodic ‘multiple event 1-patterns’. SMCA suffers from the fact that it does not generate
closed or parsimonious output, thus increasing its computation time and output size relative to our
algorithm, without adding any extra information.

2http://code.google.com/p/google-sparsehash/, version 1.4.

3A misprint in the pseudocode for SPMiner in (Huang and Chang, 2005, (Fig 3, line 12)) was
corrected. For MPMiner, we used the Time-Based Enumeration (TBE) scheme, since the Segment-
Based Enumeration (SBE) scheme exhausted all available system memory for the datasets we tried.
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Dataset Vertices Timesteps Avg. density S Pmax

Enron 82,614 2,588 0.028 ± 0.064 3 40
IMDB Photos (full) 29,257 13,987 0.097 ± 0.21 3 400
Plains Zebra 313 1,276 0.31 ± 0.27 6 400
Reality Mining 100 2,940 0.23 ± 0.17 2 60
Server Log 1 (days) 111,108 783 0.024 ± 0.019 2 40
Server Log 2 (hours) 111,108 18,807 0.24 ± 0.3 2 960

TABLE V: DATASET CHARACTERISTICS, SMOOTHING (S), AND MAXIMUM PE-
RIOD (Pmax) VALUES USED FOR EXPERIMENTAL EVALUATION.

3.6.1 Datasets

We used dynamic networks collected from a variety of sources and covering a range of

interaction dynamics. These networks are described below.

Enron E-mails. The Enron e-mail corpus is a publicly available database of e-mails sent

by and to employees of the now defunct Enron corporation.1 Timestamps, senders

and lists of recipients were extracted from message headers for each e-mail on file. We

chose a day as the quantization timestep, with a directed (unweighted) interaction

present if at least one e-mail was sent between two individuals on a particular day.

Plains Zebra. Ecologists are interested in studying the association patterns of wild Plains

zebras (Equus burchelli) in their natural habitat. For this dataset, social interactions

between animals were recorded in a nature reserve in Kenya by behavioral ecolo-

gists from Princeton University, based on direct visual observations (Fischhoff et al.,

1Available at http://www.cs.cmu.edu/~enron/
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2007; Sundaresan et al., 2007; Juang et al., 2002). Zebras are uniquely identifiable

by the pattern of stripes on various parts of their bodies. The data was collected

by ecologists making visual scans of the herds, typically once a day over periods of

several months. Each entity in the dynamic network is a unique Plains zebra and an

interaction represents social association, as determined by spatial proximity and the

domain knowledge of ecologists.

Reality Mining. Cellphones with proximity tracking technology were distributed to 100

students at the Massachusetts Institute of Technology over the course of an aca-

demic year (Eagle and Pentland, 2006). The timestep quantization was chosen as 4

hours (Clauset and Eagle, 2007).

IMDB Celebrities. The Internet Movie Database (IMDB)1 maintains a large archive of

tagged, disambiguated and dated photographs of individuals associated with the pro-

duction of commercial entertainment, including actors, directors and musicians. One

might reasonably assert that a degree of social (or at least professional) association

exists between people photographed together by the popular press. Thus, similar to

the methodology of the Plains zebra sightings, we collected metadata on 193,707 pho-

tos2, which collectively represent a partial structure of the social network of people

1http://www.imdb.com

2In (Lahiri and Berger-Wolf, 2008), we only used photos with two or more people, which is the
reason for the dataset size discrepancy between versions. For this dataset, it is also informative to
represent singleton (disconnected) vertices, which we have done here.
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associated with the entertainment industry. The quantization period was one day. Al-

though the time span of the dataset is just under forty years, most of the interactions

occur in the later portion of the dataset.

Server Logs. We used the HTTP access logs from an Apache web server hosting organi-

zation and personal pages for the Laboratory of Computational Population Biology

at the University of Illinois at Chicago.1 Each vertex is either an IP address on the

Internet or a file hosted on the web server. A directed edge from an IP address to a file

indicates that the file was successfully accessed by a host at the IP address, creating

a bipartite graph at each timestep. The log data runs from April 2007 to May 2009.

We used two different quantizations of one day and one hour per timestep.

3.6.2 Results on Natural Data

3.6.2.1 Algorithm Performance

We first ran a series of experiments on our algorithm with σ = 3 and no smoothing, i.e.

mining only perfectly periodic patterns. We then ran a second set of experiments with Pmax

set to restricted values, and a third set of experiments with σ = 3 and variable amounts of

smoothing per dataset. Table Table V summarizes the Pmax and smoothing values used for

each dataset, based intuitively on typical periodicities and how much noise we would expect

in each dataset. The second and third set of experiments demonstrate the performance of

the algorithm in online and noisy situations, respectively.

1http://compbio.cs.uic.edu/
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Figure 20: Performance of the periodic subgraph mining algorithm at σ = 3, shown with
an exponential y-axis.

Figure 20 shows the running time and memory usage of our algorithm under different

circumstances. The black column shows the case when no smoothing is used and the max-

imum period is unrestricted. This might be considered a typical ‘offline’ analysis scenario.

An interesting point to note is that Reality Mining takes much more time to complete

mining than the much larger Enron dataset, most likely due to the density of periodic pat-

terns in it. In the typical online analysis scenario with a restricted Pmax, the algorithm

took less than 30 seconds to execute and used less than 40 MB of memory in all cases. As

expected, restricting the maximum period has a very significant effect on the performance

of the algorithm.

Figure 21 shows the size of the pattern tree at each timestep for the Enron and Reality

Mining datasets. It can be seen that the actual tree size is a small fraction of the theoretical

upper bound. Furthermore, limiting the maximum period of mined patterns has a large
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Figure 21: Number of pattern tree descriptors with no smoothing or restrictions on period
(‘normal’), and for various smoothing and Pmax values, compared to the theoretical bound.

impact on reducing the tree size, as expected. The Enron plot dips dramatically after about

timestep 2,000 because most timesteps after that are empty. A large number of descriptors

are flushed from the pattern tree when the empty timesteps are encountered. No such dip

occurs in the Reality Mining dataset, which is densely periodic and continues to exhibit

periodic behavior right up to the very end of the observation period.

3.6.2.2 Characterizing Inherent Periodicity

In addition to investigating specific periodic interaction patterns, a second goal for

mining parsimonious PSEs is to analyze global periodicities in the system. In the context

of dynamic networks, the goal would be to characterize the gross dynamics of the individuals

in the system. Figure 22 shows histograms of the periods of patterns mined from the Enron,

IMDB, Server Log and Plains Zebra datasets. For Enron, we restrict our attention to

patterns with a high average purity, i.e. patterns which are likely to capture truly periodic
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behavior. Daily interaction patterns are the most prevalent periodic patterns1, followed

by weekly patterns, as manifested by the clear peak at p = 7. For the IMDB dataset, we

notice a similar peak at about p = 364. This can be explained by celebrity sightings at

annual events – awards shows, for example. Thus, we are able to capture and characterize

plausible natural periodicities in human interactions with no prior knowledge about the

datasets. The hour-quantized Server Log dataset shows a number of interesting peaks at

about 24, 48 and 168 hours (the last one corresponding to a periodicity of one week). Note

that there is also relatively little variance around the peak at one week, suggesting that these

accesses were performed automatically. Inspecting patterns at these periods revealed the

activity of various search engine crawlers, confirmed by checking ownership of IP netblocks

and User-Agent strings in the HTTP requests. The Plains Zebra dataset showed a wide

range of periodicities, as one might expect of animal behavior, with no strongly discernible

peaks.

Figures 22a and 22c are histograms of the periods of patterns that are above a mini-

mum purity threshold. Clearly, changing this threshold could result in a different picture,

as patterns of lower purity get included. Figure 23 shows a two-dimensional view of the his-

tograms as a density plot. Each row represents a histogram as in Figure 22, but thresholded

by the value of the y-axis. Darker cells represent a higher concentration of patterns at that

period (relative to the most concentrated cell in the row), and correspond to the peaks in

1Too much importance should not be attached to patterns of period 1 in plots thresholded by
purity, since all patterns of period 1 necessarily have purity 1.
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Figure 23: Pattern density at each minimum purity threshold. Each row shows the dis-
tribution of pattern periods for patterns with purity at or greater than the y-axis value.
Darker cells indicate more patterns.

Figure 22. The top-most row is the distribution of the periods of patterns that only occur

periodically, i.e., never in-between periodic occurrences, whereas the lowest row places no

constraints and shows the period distribution of all mined patterns. In Figure 23a, for

example, the row corresponding to a y-value of 0.7 represents the histogram in Figure 22a.
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The Enron and Reality Mining datasets show strong daily and weekly periodicities, as

might be expected from human interactions. This commonality is interesting because the

interactions occur by different mechanisms in each dataset – by e-mail in the Enron dataset,

and by physical proximity in the Reality Mining dataset. The Plains Zebra dataset, while

not showing periodicities as strong as the human datasets, seem to contain relatively dense

region at periods between 25 and 38. It is currently unclear whether this region indicates

behavior that is ecologically meaningful, or is an artifact of the data.

3.6.2.3 Qualitative Analysis

We now turn our attention to some qualitatively interesting periodic subgraphs discov-

ered by our algorithm illustrating a range of periodic behavior. Figure 24a illustrates a

somewhat complex pattern from the IMDB photo database that repeated approximately

every week. Although the support is relatively low, what is interesting about this subgraph

is the repeated non-trivial grouping of people, all of whom turned out to be contestants on

a weekly ‘reality television’ show. Figure 24b is also from the IMDB database and is an

approximately annually repeating pattern. The three individuals in the clique are actresses

in a popular (circa 2004) television show, while the fourth vertex is the spouse (as of 2009)

of one of the actresses. Given this context, the low average purity of the pattern is to be ex-

pected as the three actresses are very likely to have appeared together in between what are

likely to be award shows. The nontrivial links in such patterns are particularly interesting

and are indicative of the show’s progression or relationships other than co-starring.
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The subgraph shown in Figure 24c has the highest periodic support in the Enron dataset,

repeating every day for 84 consecutive days, including weekends. This is representative of

a large number of similar periodic patterns in Enron, in which one person emails a group

of people with periods ranging from 1 to 14 days. As shown earlier in Figure 22, weekly

emails seem to be particularly popular in a corporate setting such as this, and could be

used to infer functional communities within the corporation.

Finally, we turn to the Plains Zebra dataset and to one of the most intriguing patterns

shown in Figure 24d. Although it is quite likely that the period of 7 days is an artifact of

the manner in which the population was sampled, the high purity of the pattern indicates

that this is a relatively stable grouping. It is also by far the largest and most repetitive

such pattern, parts of which are periodic at other times as well. In contrast, the subgraphs

that repeat over multiple months are shown in Figures 24e and 24f. Although the support

of the latter two patterns is relatively low, the high purity of Figure 24f stands out and is

representative of a large number of small but highly periodic patterns. Moreover, all the

patterns are of interactions of stallion male zebras and correspond to their harems grouping

for a period of time. Such groupings are indeed considered more stable for short periods of

time than bachelor associations (Fischhoff et al., 2007).

3.6.3 Comparison to SMCA

We generated relatively small synthetic datasets with different characteristics to compare

the performance of our algorithm with the SMCA algorithm on simple interaction data.

Starting with a population of 30 individuals, we generated a single graph of density d. The
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edges of this graph were then sampled independently at random for each of the T timesteps.

Although this is not intended to be a realistic model of a social network, it allows us to

control two parameters crucial to the mining process – the overall density of the dynamic

network, and the number of timesteps. Since real social networks are generally sparse, we

used two values for d: 0.1 and 0.15. For each of these values, T was varied from 100 to 1000

in increments of 100.

Ten random dynamic networks were generated for each combination of T and d, and

converted to their set representations. Both algorithms were run on the same set of synthetic

networks with a minimum support value of σ = 3 and the maximum period unrestricted,

calculated using Proposition 3.4.2 for each value of T . All algorithms were limited to 8 GB

of disk space for storing their output, which can be considered reasonable given that this

value is several orders of magnitude larger than the size of the input networks.

Figure 25 shows the performance of SMCA compared to our algorithm. The computation

time used by both algorithms is comparable for density d = 0.1, although SMCA does not

scale as well as our algorithm. For a slightly higher density of d = 0.15, the number of

periodic patterns is expected to increase as well. The computation times are no longer

comparable between algorithms, as shown in Figure 25b. In Figures 25b and 25d, there

are no data points for SMCA beyond T = 500 since the algorithm reached the maximum

output size of 8 GB prior to completion. This is partly caused by the fact that SMCA does

not output closed or parsimonious patterns, which is evident from the number of patterns

generated by SMCA, shown in Figures 25c and 25d on a logarithmic scale.
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Thus, our algorithm scales much better than SMCA. The number of patterns generated

by SMCA is generally about three orders of magnitude larger than the number of parsimo-

nious patterns output by our algorithm. The intractability of non-parsimonious periodic

pattern mining is one of the main reasons we could not use SMCA on the larger natural

datasets, where the number of vertices, timesteps, and the average timestep density are

much higher than the values used here.

3.7 Summary

We have proposed and formalized the periodic subgraph mining problem for dynamic net-

works and analyzed the computational complexity of enumerating all periodic subgraphs.

We have shown that there are at most O(T 2 ln T
σ ) closed periodic subgraphs at minimum

support σ in a dynamic network of T timesteps. Furthermore, we have described a polyno-

mial time, online algorithm to mine all periodic subgraphs, including a smoothing mecha-

nism for mining subgraphs that are not perfectly periodic. We have also proposed a new

measure, purity, for ranking mined subgraphs according to how perfectly periodic a sub-

graph is. We have demonstrated our algorithm on four real-world dynamic social networks,

spanning interactions between corporate executives, college students, wild zebra, and Holly-

wood celebrities. Our algorithm efficiently mines all periodic patterns, is provably tractable,

and is a meaningful alternative to using frequent subgraph mining to look for interesting

patterns in dynamic networks. We have also shown that periodic subgraphs can be used as

an effective characterization of the dynamics of various systems. Our technique was able
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to discover plausible natural periodicities in many of the systems we examined, and shows

promise as a tool for exploratory analysis of interaction dynamics.

There are a number of interesting avenues for future research. One such direction is

to incorporate probabilistic models of periodicity instead of strictly combinatorial ones.

Yang et al. (Yang et al., 2002) and Ma and Hellerstein (Ma and Hellerstein, 2001) are

two examples of such attempts; it would be interesting to see how well they perform in

dynamic networks. Along the lines of various studies on assessing the interestingness of

frequent patterns (Bringmann and Zimmermann, 2009; Tatti, 2008; Yan et al., 2008), a

method for assessing the statistical significance of mined patterns under different statistical

models would be valuable in dynamic networks, especially in the context of inter-disciplinary

research. A number of extensions can also be made to the algorithm we have presented in

this chapter. These include an extension to mine complex periodic patterns, similar to

the types of patterns mined in (Han et al., 1999; Huang and Chang, 2005; Yang et al.,

2003; Ma and Hellerstein, 2001), and different algorithms or heuristics for manipulating

the structure of the pattern tree to increase efficiency. The concept of noise could also be

extended to discover noisy subgraphs instead of just noisy periodicities. Finally, we believe

that the capabilities of the method, especially in an inter-disciplinary context, can only be

fully explored if the results of the mining process are presented or visualized in a succinct

but insightful manner. This is a challenging and open question.



CHAPTER 4

MINING COUPLED EDGES

In this chapter, we deal with the problem of mining strong temporal correlations be-

tween interactions in a dynamic network, which we call coupled edges. Typical dynamic

network datasets can contain thousands or millions of edges occurring and re-occurring on

a continous streaming basis. It is likely that a majority of these edges are unpredictable with

any tractable model, and yet there are likely to be interactions that are quite regular and

predictable. In a phone call network, for example, a user’s outgoing and incoming phone

calls may seem entirely random in aggregate, but there might be a regular phone call that

is always made on the first Friday of each month, or between business hours each Tuesday.

Similarly, if an e-mail sent from one person to another is frequently followed by a reply

within a few hours, or a forward to a third person within five minutes, that is evidence for

a specific type of relationship between them. The crux of this chapter is to tease out a few

of these predictive, tightly coupled relationships solely from the dynamics of the network,

i.e., to extract structural correlations solely from network dynamics.

In contrast to other data mining methods, our definition of a strong temporal correlation

requires a degree of predictive power on unseen data, rather than being based on descriptive

statistics. In the examples above, the temporal correlations have to be in both directions –

if an e-mail from A to B is correlated with a reply within a few hours, it should also be that

a reply from B to A is preceded by an initial e-mail from A. In other words, an e-mail from

161
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A to B predicts a reply within a few hours. By using predictive power on unseen data as

the property of interest for data mining, we overcome a number of issues: model selection

between competing models is trivial (choose whichever model predicts unseen data better),

data mining results come with a degree of statistical generality (as opposed to being based

on descriptive statistics like frequency), and the significance of a particular mined pattern

is easy to assess based on the degree of predictability.

In many cases, most interactions present in a network might be unpredictable without

external information, but the ones that are may be of scientific and commercial value. Some

of these practical uses include, for example, (i) community inference, where regular inter-

actions between two people can signify a special relationship between them, (ii) marketing,

where advertising opportunities arise from knowing when a particular interaction between

two people is going to occur, (iii) unusual activity detection, such as churn prediction (Wei

and Chiu, 2002), which can be triggered by many of an individual’s regular interactions

ceasing to occur within a short period of time, (iv) detecting plausible hidden relationships,

where two otherwise unconnected interactions between different sets of individuals are found

to be temporally predictive, and (v) spam detection based on mechanistic and predictable

interaction patterns, even when they are perturbed by random noise.

Specific types of predictable behavior have been studied independently in the literature,

and one of our goals here is to automatically and transparently detect many such restricted

subsets:
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1. Periodic patterns, such as a weekly e-mail exchange between two people, which

have been found at different timescales in many types of dynamic networks (Lahiri

and Berger-Wolf, 2008).

2. Bursty behavior, such as periods of inactivity followed by intense periods of activity,

has been observed in e-mail networks (Malmgren et al., 2009) and web server con-

nections (Frias-Martinez and Karamcheti, 2003). Although the authors of (Malmgren

et al., 2009) analyzed the aggregate behavior of users, and not specific interactions,

there are compelling intuitive reasons (such as the human diurnal cycle) to believe

that ‘bursts’ should be observed at the level of individual interactions as well.

3. Temporal association rules, where the occurrence of a particular event a leads to

event b occurring after a fixed time interval (Oates et al., 1997; Tung et al., 1999; Frias-

Martinez and Karamcheti, 2002; Lahiri and Berger-Wolf, 2007). A variant of temporal

association rules is the frequent episode formulation (Mannila et al., 1997a; Laxman

et al., 2005).

The methods we describe in this chapter model the temporal relationships above, and

also have a number of other attractive features. A typical pre-processing step for dynamic

network data is to quantize the time stream of interactions into coarser timesteps. Where

the original dataset might have a timestamp for each edge at the resolution of about a

second, typical pre-processing groups all edges into shifting windows of hours, days, or even

months (see Chapter 2 for a description of various quantization levels used in the literature).

Our techniques operate in continuous time and do not require any time quantization; no
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information is lost, and the user is spared a parameter and an extra preprocessing step.

Furthermore, our techniques operate on differenced time series, i.e., by considering the

time delay between edges rather than their occurrence times, and can thus handle short-

and long-range interactions seamlessly within the same framework. Finally, our method is

designed specifically for networks and takes advantage of network structure, rather than

retrofitting techniques for more limited types of data by assuming, e.g., independence of

edges.

4.1 Problem Definition

We begin with interaction data in its unprocessed form: a continuous stream of inter-

actions between uniquely identifiable entities data at the finest possible timescale. In cases

like e-mail and phone call networks, this means that each interaction (edge) carries a times-

tamp on the granularity of about a second. In almost all other types of network analysis,

timestamped interactions are quantized into a coarser timescale where timesteps comprise

of hours, days, months, or even years. Multiple interactions within the same quantized

timestep are either considered a single interaction, or weighted by the count of interactions

within that timestamp. For our approach, however, we work in continuous time and do not

require the user to quantize interaction data. We see this as an advantage of our method.

The focus of our method is to mine coupled edges. Figure 26 illustrates a pair of edges

in a dynamic network stream that are coupled. In this case, occurences of the edge (1, 3)

reliably predict occurrences of edge (1, 2) after a fixed time period, even though the opposite

is not necessarily true. The mining problem is to extract these edges under two additional
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Figure 26: Streaming interaction data in continuous time with a coupled pair of edges shown
in red. Note that the coupling is directional.

constraints: there is generally more noise than signal in the dataset (i.e., most edges are

likely to be uncoupled), and the temporal relationship between coupled edges might not be

a simple fixed time delay, as shown in Figure 26. We review other approaches that make a

fixed time delay assumption in Section 4.2.

Definition 4.1.1. (Coupled edges) An ordered pair of edges 〈E1, E2〉 is coupled if occurences

of E2 can be predicted solely from prior occurrences of E1, where possibly E1 = E2.

In the context of a data mining problem, Definition 4.1.1 is the property of interest,

and we aim to develop tractable techniques that will extract pairs of edges from large

quantities of data where the property holds. Definition 4.1.1 can be broken down into

three components: how an edge is predicted, how the prediction of a particular algorithm

is evaluated, and how that translates into a mining problem. We deal with each part in the

subsequent subsections.

4.1.1 Prediction

Given a pair of candidate edges E1 and E2, we want to find the degree to which they

are coupled by measuring how well E1 predicts E2. The method of determining which edge
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pairs to test is part of our solution to the problem, and is described in Section 4.3. For

now, we assume that we are given an edge pair, where E1 is called the trigger and E2 the

response. Let the timelist of an edge (u, v) be the ordered sequence of timestamps at which

it occurs, denoted T (u, v). We also assume that there is significant overlap in the timelists

of the trigger and response. Without this assumption, the case of time-shifted coupling is

very hard to detect. If, for example, five instances of a trigger within an hour are coupled

to five instances of a response several hours later, it is hard to distinguish that relationship

from noise, or an autocorrelation in the response.

The timelist of the response edge is segmented into training, validation, and testing

segments. The training segment is used to learn the parameters of a model that will predict

occurrences of the response based on historical observations. The validation segment, in

our formulation, is used for model selection and to avoid overfitting, although other reg-

ularization or heuristic methods may be used as well. The prediction problem is then as

follows.

Definition 4.1.2. (Prediction) Given a set of candidate models Mi(θi) each parameterized

by θi, and training timelists for the trigger and response edges, find the optimal parameters

of the model. Choose the model M ′ that maximizes an evaluation score E on the validation

timelists TV .

M ′ = arg max
Mi

E(Mi(θi), TV )
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Figure 27: Setup for testing the predictability of a pair of edges.

Note that this describes a fairly generic machine learning setup. The final segment of

the timelist will be used later for testing and mining. We use the validation segment to

test the performance of multiple prediction models on unseen data, while still withholding a

final test segment to evaluate the chosen model. A number of other statistical mechanisms

can be used for model selection, such as the Bayesian Information Criterion (Raftery, 1999),

but since our final goal is to test predictable edges, using predictive performance on unseen

data is a logical choice.

4.1.2 Evaluation

A key factor of our problem formulation is that the timestamp for each observed in-

teraction is a positive real value, and consequently, predictions of the next occurrence of
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each interaction are also real values.1 As a result, matching an edge’s predicted occurrences

to its observed occurrences is non-trivial, and traditional measures of prediction efficacy

based on a confusion matrix, such as the F1-score or ROC curves, cannot be used directly.

Furthermore, since data is received on a streaming basis, predictions are made continuously

and incorporate previously seen observations, which further complicates performance eval-

uation. We therefore propose a novel evaluation framework to handle both these facets of

our problem.

To handle both these facets of our problem, we propose an evaluation framework that

takes into account the fact that both observations and predictions of interactions occur in

continuous time, and that data is received on a continuous, streaming basis.

For a particular edge, a prediction algorithm generates a predicted timelist TP , which

is to approximate a true (observed) timelist TT . Since the prediction algorithm also has a

partial view of TT as it streams by, we are also given a predicted from timelist TF , which

contains the timestamp at which each prediction ti ∈ TP was made, i.e., if xi is the ith

element of TF and yi the ith element of TP , then the prediction algorithm generated a

prediction of time yi at time xi, where naturally yi > xi.

We first define what qualifies as a correct prediction, and subsequently the relative

numbers of true and false positives and negatives, and then how close (in continuous time)

1In practice, discrete-valued epoch seconds are used as timestamps for communications networks,
but our argument applies generally to any fine-grained timescale.
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Figure 28: Example of matching a true and predicted timelist in continuous time in an
online setting. Solid connecting lines are matched pairs, dotted lines are potential matches,
and red lines show when each prediction was made.

correct predictions are to their corresponding true occurrences. This can be formulated as

a matching problem, based on the following constraints:

1. A predicted occurrence should only be matched to at most one of the true occurrences

that are adjacent to it in time, or not at all.

2. A predicted occurrence at ti cannot be matched to a true occurrence at tj if the

algorithm predicted ti at or after time tj . This is an intuitive constraint due to the

online setting of the problem, and also prevents a trivial algorithm that predicts an

occurrence at tj + 1 immediately after observing an occurrence at tj from achieving

near-perfect performance.

3. The benefit of matching a true occurrence ti ∈ TT and predicted occurrence tj ∈ TP

should be inversely related to the time difference between them, e.g., as (|ti−tj |+ǫ)−1,

subject to the first constraint, and where ǫ is a small constant to ensure that the

quantity is well defined for a perfect algorithm.
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Specifically, the constraints above can be formalized as a weighted bipartite maximum

matching problem (West, 2001). Each element of TP and TT is represented by a node in the

two corresponding partitions of a bipartite graph. An edge connects ti ∈ TP and tj ∈ TT if

they are sequentially adjacent in time (with no other elements of TT or TP in between) and

satisfy constraints 1 and 2. The edge weight of (ti, tj) is defined as (|ti− tj |+ ǫ)−1 for some

small constant ǫ. Efficient algorithms exist for finding a maximum-weight matching in such

a graph (Galil, 1986). Figure 28 shows an example of the result of matching a predicted

and a true timelist, where the red loops represent the predicted from timelist.

If M is the set of matched edges, then some traditional measures are conveniently

expressed in terms of the cardinality of M , i.e., the number of matched pairs:

Precision = |M |/|TP |

Recall = |M |/|TT |

Mean Absolute Error (MAE) =
1

|M |
∑

(ti,tj)∈M

|ti − tj |

We summarize the Precision and Recall measures into their geometric mean, the F1-

score, and characterize the performance of a prediction algorithm on a single timelist in

terms of the F1-score and the MAE. The former gives a sense of the completeness of the

predictions, i.e., how well the number and temporal spacing of predictions approximate

Tt, and the latter of their temporal accuracy. A perfect prediction algorithm would have an

F1-score of 1 and an MAE of 0. Note that it is trivial to construct cases where one quantity
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is completely maximized or minimized at the cost of the other, and hence both measures

need to be taken into account. We refer to the space of (F1, MAE) pairs as the evaluation

plane.

It is also often necessary to determine whether a given (F1, MAE) pair of values is in some

sense ‘better’ than another pair. This is needed, for example, in comparing the performance

of two different algorithms or parameter sets, and for the final mining task described in the

next subsection. The case of trivial dominance in a ranking is straightforward: one pair will

have a higher F1 score and a lower MAE than the other pair. However, for non-trivial cases,

we introduce a parameter η that specifies the relative cost of improving one measure over the

other. It can be interpreted as the maximum increase in MAE for a unit gain in F1-score for

one pair of values to dominate another. As an example, consider the evaluation plane shown

in Figure 29, where the point labeled A represents a perfect prediction algorithm. The slope

of the line connecting C and D is equal to η, and thus both points are considered equivalent

in a ranking. Thus, an overall ranking for the points in Figure 29 is: A,B,E, {C,D}.

4.1.3 Mining

Finally, we return to the mining problem of finding the most tightly coupled edges. After

model selection is done on the validation segment, the final withheld segment of testing data

is used to assess the predictive accuracy of each model. The evaluation scores on this final

test segment are used to determine the order of data mining results. Although it would

seem that there are a number of tractability issues with the mining framework described in
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this section, we show how to overcome them by assuming a smaller (but still meaningful)

dependency space in Section 4.3.

4.2 Related Work

In this section, we review literature directly related to mining coupled edges in dynamic

networks. There are two broad categories of related work: a similar problem in network

analysis called link prediction, and a number of approaches for other types of data that

could, in principle, be applied. We outline the similarities, differences and shortcomings of

these approaches in this section.

4.2.1 Link Prediction

There are two variants of the link prediction problem for networks: one deals with a single

graph in which missing links are to be predicted based on some model of link formation,

and another formulation that deals with predicting links over time in dynamic networks.

An important difference between static and dynamic link prediction is that the former does
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not make predictions on a fine temporal scale, but rather just about which new links are

likely to be formed ‘in the future’. Both versions, however, are generally classification or

ranking problems, and as such, focus less on the interpretability of the model than predictive

performance. Although we describe both variants below, our problem has more in common

with dynamic link prediction.

4.2.1.1 Static networks

The link prediction problem for static networks is defined as the question of ranking

unseen edges by their likelihood of appearance in the future, without specifying when the

edges will form. It therefore deals with the prediction of link formation, rather than the

next occurrence of a link in a dynamic setting. The premise of this approach is that

social networks tend to have structural similarities throughout the network that can be

exploited to discover links that are either missing, or likely to form in the future. Liben-

Nowell and Kleinberg (Liben-Nowell and Kleinberg, 2003) were one of the first to define

the link prediction problem for social networks. They split a dynamic network along the

time axis to form training and testing networks. Various structural node and edge measures

were computed on the static network created from the first half of the dynamic network.

Unobserved edges were then ranked by their probability of occurrence in the test network.

They report promising results at predicting link formation using certain graph-theoretic

measures, compared to a random and other simple baseline predictors.

A minor variation of the previous approach using weighted graph measures is described

in Murata and Moriyasu (Murata and Moriyasu, 2007). Kashima and Abe (Kashima and
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Abe, 2006) build upon the work of Liben-Nowell and Kleinberg (Liben-Nowell and Klein-

berg, 2003) and others by first defining a model of network evolution that describes each

edge as a probability. An edge label function φ(t) is used to assign probabilities of existence

to each edge, and the evolution of φ over time is assumed to be a Markov process. Specifi-

cally, a node in the network decides to ‘transfer’ an edge probability of one of its incident

edges to an edge incident on another node in the network. The parameters of the model

are the probabilities of each edge pair engaging in such a transfer. The authors describe a

transductive algorithm based on Expectation-Maximization that jointly estimates the prob-

abilities of each ‘test’ edge as the model is learned. It is worth noting that this model is

superficially related to the triadic closure in social network analysis, which is the assump-

tion that open triangles in a social graph tend to close with high probability (Wasserman

and Faust, 1994; Kossinets and Watts, 2006).

O’Madadhain et al. (O’Madadhain et al., 2005) address link prediction in explicitly tem-

poral event data, as well as the evolution of entity rank (importance) over time. For the link

prediction component of their paper, the methodology used is similar to Liben-Nowell and

Kleinberg (Liben-Nowell and Kleinberg, 2003) in that a dynamic network is split into two

segments along the time axis for training and testing. However, instead of using structural

graph features to rank unseen edges as in (Liben-Nowell and Kleinberg, 2003), O’Madadhain

et al. treat the problem as a classification problem, and use both arbitrary entity attributes

(e.g. geographic proximity, similarity of publication patterns (O’Madadhain et al., 2005))
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as well as structural features of the graph for link prediction. The learning techniques used

are Naive Bayes and logistic regression.

Finally, a number of approaches to link prediction are based on the recent paradigm

of statistical relational learning (Getoor and Taskar, 2007). Wang et al. (Wang et al.,

2007) learn undirected graphical models in the neighborhood of a pair of nodes whose edge

incidence is to be predicted. Popescul and Ungar (Popescul and Ungar, 2003) approach the

task by combining logistic regression with a feature generation algorithm that aggregates

SQL queries on node attributes to predict future edges in a bibliographic database. An

overview of work in this area can be found in Getoor et al. (Getoor et al., 2003) and Jensen

and Neville (Jensen and Neville, 2003).

4.2.1.2 Dynamic networks

Dynamic link prediction is defined as the prediction of when previously observed and

new interaction are going to occur again in the future, based on temporal and structural

correlations. There are two related, but not necessarily equivalent, variants of the structure

prediction problem:

1. (Next Step Prediction) Given a dynamic network G of t timesteps, predict a set

of interactions (edges) that will occur exactly at timestep t + 1.

2. (Next Occurrence Prediction) Given a dynamic network G of t timesteps, predict

the future timestep when each interaction will next occur.

Huang and Lin (Huang and Lin, 2009) describe a method for both variants using a com-

bination of static graph measures and standard time-series prediction techniques (Chatfield,
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2004). Specifically, they fit an ARIMA1 model to the time series of binary occurrences or

occurrence frequencies of each edge, independently of all other edges. The edge occurrence

scores for the next timestep are then blended with the occurrence scores based on various

static graph measures, like the ones described in Liben-Nowell and Kleinberg (Liben-Nowell

and Kleinberg, 2003). Due to large number of edges in a typical dynamic network, and the

parameter optimization required to fit a single ARIMA model, this approach is unlikely to

scale well to realistic networks. Furthermore, their results suggest that incorporating the

structure of the network, such as the inter-dependencies between edges, into a predictive

model would be advantageous. Although time series models are generally interpretable

and applicable to mining coupled edges, the approach here would only allow the mining

of coupled autocorrelations (i.e., it would not be possible to mine a coupling between two

different edges).

An interesting application of network prediction is the approach of Bunke et al. (Bunke,

2003; Bunke et al., 2005) in network anomaly detection. Given a stream of network traffic

data, they use decision trees and ‘median graphs’ to detect connection anomalies. The

trees are learned from a sequence of training data, where no anomalies are presumed to

be present. This is extended by Pincombe (Pincombe, 2005), who uses Auto-Regressive

Moving Average (ARMA) techniques instead. Since their focus is on predictive accuracy,

their approach is not applicable to our mining problem.

1Autoregressive Integrated Moving Average
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Phithakkitnukoon and Dantu (Phithakkitnukoon and Dantu, 2007) propose a method

for predicting whether a phone user will receive an incoming call at various hours of the

day, without attempting to predict who the call is originating from. They make various

simplifying assumptions, such as the call inter-arrival time and the number of outgoing

calls per incoming call both following a Gaussian distribution. They report an error rate of

approximately 5% on the call logs of 20 individuals, with no recall or specificity values.

Lahiri and Berger-Wolf (Lahiri and Berger-Wolf, 2007) describe an online technique that

probabilistically estimates the delay between pairs of edges and uses this delay to predict

a set of edges that will appear at an arbitrary point in the future. To aid the tractability

of the approach, they measure the delay between frequent subgraph pairs instead of edge

pairs. A simple heuristic mechanism dynamically adjusts which edge/frequent subgraphs

pairs are used to make predictions. A limitation of this approach is that frequent subgraphs,

or generally subgraphs of interest, have to be pre-specified. This limitation can be overcome

by restricting the edge pair correlation to pairs of edges that are likely to be correlated, e.g.

those edge pairs that share a common vertex.

Finally, Acar et al. (Acar et al., 2009) describe the use of matrix and tensor decompo-

sitions for solving both static and dynamic link prediction problems. For the static variant,

they use a truncated low-rank Singular Value Decomposition (SVD) of a time-weighted

graph, and then predict future edge formation by the scores of each (i, j) entry in the re-

constructed matrix. Although the SVD of a sparse matrix can be computed very quickly,

re-assembling all link prediction scores in the most general case requires iterating over all
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cells in the adjacency matrix, an intractable O(V 2) operation for large networks. For the dy-

namic variant of the problem, they use standard time series prediction on the coefficients of

a CANDECOMP/PARAFAC (CP) tensor decomposition of a dynamic network (see (Faber

et al., 2003) for a recent review). Although this requires choosing some parameters, it has

the advantage that CP tensor decompositions carry a lot of easily interpretable information

and can be used for data mining.

As we noted before, the prediction algorithms presented here, with the exception of

the CP tensor decomposition of (Acar et al., 2009) and the structure prediction approach

of (Lahiri and Berger-Wolf, 2007), are generally black boxes from which it is difficult to

extract meaningful relationships between edges.

4.2.2 Event Prediction

Event prediction aims to learn signatures that precede certain target events in a stream

of symbolic or numerical data. The overall goal is to be able to predict occurrences of

specific events before they happen, such as fraud, hardware failure, or intrusion into a

computer network, by monitoring a stream of log messages. It can be seen as a special

case of dynamic network next-step prediction, where we do not want to predict the entire

graph at timestep t in a dynamic network, but just a specific part of it. y It is also more

specialized in the sense that it generally deals with low-dimensionality streams, and can

sometimes be treated as a conventional supervised learning problem. As a result, much of

the work in this area has focused on specific applications instead of general techniques.
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Fawcett and Provost (Fawcett and Provost, 1999) call this class of problems ‘activity

monitoring’, and outline several important issues in how it differs from conventional classi-

fication problems. Among their contributions are a generic framework for modeling event

prediction problems and an illustration of how prediction performance should be quanti-

fied. They point out that using accuracy or error to judge the merits of an event prediction

model has its shortcomings, and suggest using ROC curves (Fawcett, 2004) or a specialized

variation for activity monitoring, the AMOC curve (Fawcett and Provost, 1999).

A number of approaches to event prediction use conventional classifiers like Support Vec-

tor Machines (SVMs) or rule-based ones built from mining association rules, especially in

the context of hardware failure prediction from event logs and network intrusion prediction.

Vilalta and Ma (Vilalta and Ma, 2002) mine frequent events from a time window preceding

target events, and then combine these rules into a classifier. Domeniconi et al. (Domeniconi

et al., 2002) combine Singular Value Decomposition on the co-occurrence of events with an

SVM to phrase the problem as a conventional classification problem. Liang et al. (Liang

et al., 2006) look for simple correlations in failure patterns in supercomputer hardware

event logs. A more sophisticated approach to the same problem using Hidden Semi-Markov

Models is adopted by Salfner and Malek (Salfner and Malek, 2007). Finally, an interesting

approach in a different, numerical time-series domain involves using a support feature ma-

chine to perform subset selection as well as prediction of target events (Chaovalitwongse et

al., 2007).
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Various forms of intrusion detection in computer network traffic analysis can also be

thought of as event prediction, where the ‘event’ being predicted is an anomalous usage

pattern indicative of an intrusion. Kannadiga et al. (Kannadiga et al., 2007) treat the

intrusion prediction problem in much the same way as the event prediction approaches

mentioned earlier, although the connection is not explicit. Given a stream of network

traffic data, Bunke et al. (Bunke, 2003; Bunke et al., 2005) use decision trees and median

graphs to detect anomalies. This is extended by Pincombe (Pincombe, 2005), who uses

Auto-Regressive Moving Average (ARMA) techniques instead.

A major limiting factor in modeling dynamic network data as a log stream is scalability.

Naively, one might consider each edge in a dynamic network as a type of log symbol, much

like the itemset representation mapping we used in Chapter 3. However, there are two

problems with this: all structural information about the graph is lost, and the number of

symbols scales with the number of unique edges. Since many of the approaches mentioned

in this section were designed with relatively small alphabets in mind, they might not scale

well when the alphabet size increases to hundreds of thousands or even millions of edges.

Furthermore, since we cannot exploit network structure to reduce the space of dependencies,

the sheer number of possible dependencies between symbols quickly becomes intractable.

4.2.3 Sequential Patterns, Frequent Episodes and Association Rules

Mining association rules and various forms of frequent patterns are probably among the

oldest and best studied problems in data mining. Association rules in the form of a → b

are expressions of the conditional probability of co-occurrence of sets of events (Agrawal
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and Srikant, 1994; Brin et al., 1997). A generalization of this question considers temporal

association rules where a and b occur in different transactions or timesteps, usually accom-

panied by an estimate of the distance or delay between them (Tung et al., 1999; Oates et

al., 1997; Oates and Cohen, 1996). Frequent episodes are frequently occurring temporal

partial orders of events, where the entire partial ordered must be matched within a fixed

time window (Mannila et al., 1997b). Frequent sequential patterns are also closely related

to frequent episodes (Pei et al., 2004; Harms and Deogun, 2004).

Tung et al. (Tung et al., 1999) introduce the mining of inter-transactional association

rules, where the antecedent and consequent of the rule consist of disjoint itemsets and

are separated by a temporal interval. They describe an algorithm where a user-defined

parameter W controls the maximum allowable delay between the sides of each rule, and

the confidence of the rule expressed the conditional probability of seeing the antecedent

in at most W timesteps. Similarly, Oates et al. (Oates et al., 1997; Oates and Cohen,

1996) introduce almost identical notation for what they call temporal dependencies. The

difference from Tung et al. is that instead of having a window in which both antecedent and

consequent must occur, the rules express the actual delay to expect between the antecedent

and the consequent.

Both association rules and frequent episodes can used to build rule-based predictive

models, usually by taking some subset of the most frequently occurring associations. An

early system for building such a rule-based prediction model was CBA (Liu et al., 1998),

which is a non-temporal methodology that operates on transactional databases. Associ-
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ation rules can also be used as a type of feature generation process to aid further clas-

sification (Lesh et al., 1999). More recently, a connection between frequent episodes and

Hidden Markov Models has been made, with applications in building a predictive model

for streaming data (Laxman et al., 2008; Laxman et al., 2005). They model a stream of

events using a mixture model of frequent episodes mined from the stream, with sequential

correlation between the mixtures. We build on their ideas by modeling the delays between

interactions in a network, instead of modeling the occurrences of events themselves.

Mining algorithms for association and related rules generally use support (empirical

frequency) as the property of interest, although a wide variety of other measures have

been developed (Geng and Hamilton, 2006). Our mining formulation varies from these

approaches in that it does not use descriptive statistics on a single dataset as the mining

criteria, but rather predictive models and performance on an unseen segment of data. Our

approach also differs from mining approaches such as (Oates et al., 1997) and (Laxman

et al., 2008) because we explicitly take advantage of the network structure of data. As

mentioned in the previous section, although it is possible to retrofit dynamic networks into

a multidimensional discrete symbol stream that can be mined by some of these algorithms,

all connectivity information (and subsequently the ‘symbol’ dependency structure) is lost in

such a transformation. The space of possible rules is therefore much larger when the methods

described in this section are applied, making the algorithms more intractable. Finally, even

though our coupled edge rules superficially resemble the a→ b rules mined by (Oates et al.,
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1997), the → operator in our case can be a complex HMM-modeled sequential dependency,

instead of a fixed constant as used by (Oates et al., 1997) and (Tung et al., 1999).

4.3 Modeling time delays

We now present our primary contribution in this chapter: a flexible model of regular

behavior, which encompasses many previously studied forms of predictable patterns, is

insensitive to the timescale at which such patterns occur, and does not require time to be

discretized. It is a means for solving the prediction part of the mining problem described

in Definition 4.1.2, and is the core of our mining algorithm.

Consider the two timelists shown in Figure 30, which are typical examples of interactions

that can be modeled easily for future prediction. The upper timelist is an example of an

interaction that occurs in ‘bursts’, such as a phone call between two people that occurs

mainly during business hours. The lower timelist is an example of a periodically recurring

interaction. Our model is based on three assumptions about these timelists: first, that the

time delays between consecutive occurrences are drawn from a mixture distribution, second,

that there is significant sequential correlation between consecutive time delays, and finally,

that the dynamics of a particular edge are stationary for as long as the edge persists.

Time

Figure 30: Examples of timelists.
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We describe a novel Hidden Markov Model (Rabiner, 1989) (HMM) formulation for

modeling time delays between a trigger and a response edge, denoted ET = (u, v) and ER =

(x, y) respectively, and collectively referred to as an edge pair. ET and ER do not have to be

solitary or even distinct interactions, but could also be, for example, frequently occurring

subgraphs of interactions, or external events, such as ET = {First day of month} and

ER = (a, b).

We model independent temporal dependencies over two types of edge pairs: those in

which ET = ER = (u, v), or autocorrelations, and pairs in which ET 6= ER. On observing

an occurrence of ET at time t, an HMM with continuous emissions specific to the ET → ER

edge pair is used to generate a time delay δ ∈ R
+ until the next occurrence of ER, thus

generating a prediction of ER at time t + δ. Depending on its state, however, the HMM

might also not generate a prediction at all, which allows more complex relationships to be

modeled. We refer the reader to Rabiner (Rabiner, 1989) for more background on canonical

HMMs and the notation used here.

A key contribution of our formulation is to model time delays between interactions using

an HMM, instead of the more conventional approach of directly modeling the presence or

absence of an interaction at each discrete timestep (Bunke et al., 2005; Huang and Lin,

2009). By dealing with this higher-order representation, we overcome two problems that

affect dynamic network analysis: the need to quantize interactions into discrete timesteps,

and the fact that regular behavior can exist at different timescales (Lahiri and Berger-Wolf,

2008), which can be missed by approaches that use fixed length windows of real time for
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learning. As a result, it offers significant benefits over other conventional approaches and

mining methodologies: there is no need to determine how far back in real time a model

should retain data for learning, as is the case with time-series models (Huang and Lin,

2009), and there is no need to determine how much real time should be quantized into a

timestep (Lahiri and Berger-Wolf, 2007; Huang and Lin, 2009; Bunke et al., 2005).

4.3.1 Model Setup

Given a trigger timelist T (ET ) = 〈t1, ..., tA〉 and a response timelist T (ER) = 〈r1, ..., rB〉,

we first compute a set of delay pairs that generate or approximate T (ER) based on T (ET ).

Each delay pair is generated by a trigger event and is of the form 〈ct, dt〉, where ct is a binary

value and dt is a non-negative continuous value. The delay pair represents the action that a

prediction algorithm should take to generate a response event at the correct time. If ct = 0,

then no response should be predicted. Otherwise, a response should be predicted to occur

after a delay of dt from the current time. The following algorithm computes a sequence of

delay pairs from two timelists.

1. Sort the two timelists together into a single timelist T = 〈t1, ..., tA+B〉. In cases of

ties, sort responses before triggers. Let type(ti) = trig if element ti came from the

trigger timelist, and type(ti) = resp otherwise.

2. For each element ti in the sorted timelist, where i < A + B and type(ti) = trig :

(a) If type(ti+1) = trig, output the delay pair 〈0, 0〉.

(b) Otherwise, output the delay pair 〈1, ti+1 − ti〉.
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N number of HMM states
AN×N HMM state transition matrix
πk Initial probability of HMM state k
µk, σ

2
k mean and variance of Gaussian emission distribution in state k

τk probability of a continuous delay emission in state k
λ set of all HMM parameters (all the above)
qt ∈ [1, N ] HMM state at time t
φ(µ, σ2) Gaussian density with parameters (µ, σ2)
ot = 〈ct, dt〉 HMM emission at time t consisting of binary ct and continuous dt ≥ 0
bk(ot) Probability of emission ot from state k
αi(t) Forward variable; joint probability of observations up to time t and final state i
Γi(t) Probability that emission at time t was generated by state i, given data up to t
γi(t) Probability of being in state i at time t, given the entire sequence of observations

TABLE VI: NOTATION USED FOR HMM FORMULATION.

Note that if ET = ER, then ct = 1 always. Figure 31 illustrates the generation of delays

pairs from a trigger and response timelist.
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A)

<1,d>

E  =(u,v)T

E  =(u,v)R

Time

Emissions: <1,d> <1,d>

<1,d>

E  =(u,v)T

E  =(x,y)R

Emissions: <1,d> <0,0>

E  =(u,v)T

E  =(x,y)R

Emissions: <1,d> <1,d><0,0>

C) D)

B)

<1,d  >

E  =(u,v)T

E  =(u,v)R

Emissions: <1,d  > <1,d  >1 12

Special case HMM states Example Transition Matrix Emission Probabilities

(A) Partial periodic patterns 1
(

1
)

µ1 = d (period) τ1 = 1

(B) Bursty behavior 2

(

0.2 0.8
0.9 0.1

)

µ1 = d1 τ1 =
1
µ2 = d2 τ2 =
1

(C) Temporal association rules 1
(

1
)

µ1 = d1 τ1 = 1

(D) Complex temporal association rules 2

(

0 1
1 0

)

µ1 = 0 τ1 = 0
µ2 = d τ2 = 1

Figure 31: Special cases of structure prediction, with corresponding HMM delay pair emissions. Red lines indicate time
delays. The table shows examples of delay prediction HMMs that handle the special cases.
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4.3.2 HMM Structure

Given a sequence of delay pairs, we use an HMM to model the sequence, where the

emissions of the HMM are the delay pairs, and the hidden states correspond to different

distributions (clusterings) over time delays. Let the emission of the HMM at position t be

denoted ot = 〈ct, dt〉, where ct ∈ {0, 1} and dt ∈ R. Unlike a typical HMM which generates

emissions at every timestep of a discrete time process, our formulation calls for an emission

on every incident of a trigger ET being observed, with the continuous part of the emission

specifying a time delay to the next occurrence of the response ER, conditional on the binary

part of the delay pair being true. When ct = 0, the value of dt is irrelevant, and we define

it to be 0 for notational convenience. We chose a univariate Gaussian distribution to model

the continuous delays emitted in each hidden state, conditional on ct = 1, but any univariate

continuous distribution may be substituted in its place without changing the framework.1

1Note that although call durations appear to be distributed according to a log-logistic func-
tion (Vaz de Melo et al., 2010), we model the time between call initiations.
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The distribution of emissions in each hidden state is governed by three parameters:

τk, µk, σk.

P [ct = 1|qt = k] = τk

P [ct = 0, dt = 0|qt = k] = 1− τk

P [dt|qt = k, ct = 1] ∼ φ(µk, σ
2
k)

Assume that the HMM has N hidden states, with λ representing the set of all HMM

parameters (see Table Table VI). Based on the expression above, the probability bk of an

emission ot = 〈ct, dt〉 from state k is defined as:

P [ot|qt = k, λ] = bk(〈ct, dt〉)

=















τkφ(µk, σ
2
k) : ct = 1

(1− τk) : ct = 0

(4.1)

In standard HMM theory, the Baum-Welch algorithm is used to estimate maximum-

likelihood parameters for an HMM from data, given the number of states N and a suitable

parametric form of the emission density bk at each state k. The emission density in Equa-

tion Equation 4.1 is one such suitable parametric form, and the standard Baum-Welch

algorithm can be used to estimate HMM parameters from a sequence of paired emissions

O = 〈o1 = 〈ct, dt〉, ..., oT 〉 calculated from the training network segment. The derivation is
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identical to that of the canonical Baum-Welch algorithm (Rabiner, 1989), and we only list

the final parameter update equations in terms of delay pairs (the M-step of the Baum-Welch

EM algorithm) for completeness. Refer to Table Table VI for notation.

µi =

∑T
t=1 γi(t)(ct · dt)
∑T

t=1 γi(t) · ct

σ2
i =

∑T
t=1 γi(t)(ct · (dt − µi)

2)
∑T

t=1 γi(t) · ct

τi =

∑T
t=1 γi(t) · ct
∑T

t=1 γi(t)

4.3.3 Prediction

Once the Baum-Welch algorithm has been used to estimate HMM parameters on the

training segment, we use the learned model to make predictions on the validation or test

segments. We know from the Forward procedure in HMM training that the forward variable

αi(t) = P [Ot, qt = i|λ], which is the joint probability of the observation sequence ending

in the state i at time t. We also know that P [OT |λ] =
∑N

i=1 αi(T ), which is exactly the

output of the Forward procedure. In an online setting, marginalizing the α variables yields

the probability of being in a particular state i at time t, which we denote Γi(t)
1.

Γi(t) = P [qt = i|Ot, λ] =
αi(t)

∑

j αj(t)
(4.2)

1Γi(t) is distinct from the γi(t) variable in the Baum-Welch algorithm, which takes backward
probabilities into account.
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The Γ variables define a distribution over the states that caused the last observed emis-

sion. For prediction, however, we require the next likely emission, which in turn requires

a distribution over the next state, i.e., P [qt+1|Ot, λ]. This is easily computed from the

HMM transition matrix and the αi(t) variables (Rabiner, 1989), following which we use two

different methods to generate the next emission (delay prediction):

1. (Expectation) We first compute the expected probability of the next emission having

a continuous component by averaging over the continuous emission probability τi of

each state:

E[ct+1] =
∑

i

P [qt+1 = i|Ot, λ] · τi

If E[ct+1] > 0.5, then we assume that the next emission will produce a time delay, so

we compute dt as the expected delay over all HMM states.

E[dt+1] =
∑

i

P [qt+1 = i|O, λ] · µi

The final prediction is then

ot+1 =















〈1, E[dt+1]〉 : E[ct+1] > 0.5

〈0, 0〉 : E[ct+1] ≤ 0.5

2. (Maximum a posteriori) Instead of computing an expected delay over all states, we

can instead pick the most likely next state q′ and generate an emission from it. This

might be preferable in some cases, since delay predictions will not lie in between the
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expected delays of each HMM state, but will rather be drawn from a single HMM

state.

q′ = arg max
i

P [qt+1 = i|O, λ]

ot+1 =















〈1, µq′〉 : τq′ > 0.5

〈0, 0〉 : τq′ ≤ 0.5

4.3.4 Model selection and special cases

The only parameter in the learning and prediction processes described in the previous

sections, other than the global (F1, MAE) trade-off parameter η, is the number of HMM

states N for each trigger-response pair, and whether to use maximum a posteriori (MAP) or

expectation to generate predictions. In general, the number of HMM states and its connec-

tion topology is generally determined either by prior domain knowledge or other, sometimes

heuristic, mechanisms (Rabiner, 1989). However, since our objective is prediction, we fit

models of various state sizes up to a small maximum number, using both MAP and expec-

tation to generate predictions, and then choose the combination that produces the highest

ranked (F1, MAE) pair on the validation segment. The allows us to select a specific model,

and also helps avoid overfitting on the training data.

The value that we suggest for the maximum number of HMM states is based on both

a theoretical and an empirical argument. Figure 31 shows a number of special case HMMs

that cover many previously studied types of regular behavior. In all the cases shown, two
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HMM states are sufficient to model interaction dynamics, suggesting that the maximum

number of states to attempt fitting can be similarly low. Furthermore, a 3-state HMM in

our formulation has 17 non-trivial parameters to estimate, so if the timelists of interactions

are not sufficiently long, then the inference of parameters is likely to be noisy. In the

datasets we examine, we found typical timelists to be quite short, which again supports

the use of a small maximum number of HMM states. For these reasons, we suggest that a

maximum of 3-state HMMs be used to model interaction dynamics in networks comparable

to the ones we analyze here.

4.3.5 Tractability

With single interactions comprising ET and ER, the approach above is not computation-

ally tractable even for relatively small networks with about 104 unique edges. We overcome

this using two methods: the first is to only consider edges with timelists long enough to

support meaningful statistical inference. Generally, this means that the number of available

timelist points should be at least a reasonable constant factor larger than the number of

HMM parameters to be estimated. As we will show in Section 1.3, this eliminates a large

number of the edges in real networks. The second method is to only consider temporal

correlations between pairs of interactions where, (a) ET = ER = (u, v), or autocorrelations,

and (b) ET = (u, v) and ER = (u,w), or pairs of interactions that share a common node.

Modeling correlations between pairs of edges that share a common vertex is tractable as

a side effect of the skewed degree distributions observed in many real-world networks (New-

man, 2003). The number of delay pairs D is equal to the number of edge pairs that share
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a vertex, which is exactly the number of edges in the line graph1 of the original network.

This number D in turn is proportional to the sum of the squares of degrees in the original

graph (Lehot, 1974), i.e., D =
∑|V |

i=1
di(di−1)

2 , where di is the degree of vertex i. Modeling

all such dependencies in real-world networks is therefore tractable if the assumption of a

degree distribution skewed towards smaller degrees holds, as it generally has been found

to (Newman, 2003; Leskovec and Horvitz, 2008; Nanavati et al., 2006; Chakrabarti and

Faloutsos, 2006).

We also note that our algorithm is trivially parallelizable, and should scale linearly with

the number of processors used.

4.4 Experimental Results

We ran our mining algorithm on the datasets described in the previous section to de-

termine the extent to which edges in real networks are predictable. We describe two types

of results: those specific to our learning algorithm, and applications of mining predictable

interactions in general.

In all cases, we designated consecutive thirds of the timelist of each edge to serve as

training, validation, and test segments, with the results of mining determined by perfor-

mance only on the test segment. The maximum number of HMM states to fit is set to

4, in line with the reasons described in Section 4.3. We also require that all edges have

1Recall that the line graph of graph G = (V,E) contains a vertex v′i for every edge e ∈ E in G,
with an edge connecting v′

1
and v′

2
in the line graph if the corresponding edges e1, e2 ∈ E in the

original graph share a common vertex.
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Figure 32: Edge support distributions: histogram on a doubly logarithmic scale, and em-
pirical cumulative distribution on a partial logarithmic scale (inset).

timelists of length at least 40 in order to be used for learning and prediction. As shown in

Figure 32, all three datasets show a commonality in terms of heavy skews in the support

(timelist length) distribution of edges: only a small percentage of edges in each dataset have

timelists of 40 occurrences or more.

Finally, we determined empirically that the η parameter has little impact on prediction

performance, either quantitatively in terms of the mean and median (F1, MAE) scores over

all edges, or qualitatively in terms of the most predictable edges. We omit the results for

brevity, but one possible reason for the insensitivity of the algorithm to η is that there are

few edge pairs where different HMMs or parameter sets offer Pareto-optimal performance

for predicting interactions. We therefore use a value of η = 1000 for our experiments, which

corresponds to a trade-off, in our implementation, of at most 15 minutes in MAE for an

increase of 0.1 in F1-score.
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We ran two sets of experiments to test our algorithm. The first set is on synthetic data

to show that our algorithm is able to distinguish between noise and regular interactions of

the type described in Section 4.3. The second set of experiments is performed on the real

datasets described in the previous section, and illustrates a number of practical applications.

4.4.1 Synthetic Data

We created synthetic data by randomly generating HMMs of the type described in

Section 4.3. We created a different edge for each HMM, and placed 1,000 instances of

the interaction on a timeline by iterating the HMM to generate delays. A total of 600

such interactions were generated by HMMs of 1, 2, and 3 states, in equal proportions,

which encompasses the special cases shown in Figure 31. Finally, 200 additional ‘noise’

interactions were created by placing instances of the interaction uniformly at random on

the timeline.

We designated consecutive thirds of the timeline of each interaction to serve as training,

validation, and test segments. Figure 33 shows the distribution of F-1 and MAE scores

of the fitted models for each type of edge on the test segment, where the boxes represent

the interquartile range of the data. There is a clear differentiation between the MAEs of

interactions generated by HMMs and those generated randomly. In the left figure, the

‘noise’ edges have the lowest F-1 score and the highest MAE, corresponding to the lower

left part of the evaluation plane. Edges generated by a 1-state HMM, which is essentially

an autocorrelated edge with a Gaussian time delay, have the highest scores. Even 3-state

HMMs, which can generate a complex pattern of delays, are detected with greater efficacy –
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Figure 33: Fitted model test error on synthetic data.

certainly in terms of MAE, and in a statistically significant way (as indicated by interquartile

ranges) in terms of F-1 scare. This confirms that our algorithm and mining methodology

can identify the class of regular behavior that encompassed by delay-generating HMMs.

4.4.2 Edge coupling on real data

4.4.2.1 Evaluation Planes

Figure 34 shows bivariate histograms of the evaluation planes for each dataset, truncated

above an MAE value of 6 hours. Recall that the point (1, 0) represents perfect prediction,

so we are mainly interested in the distribution of edges at the lower right corner of the

plane. Our first observation is that edges do exist in this region, implying that networks

contain edges whose occurrences can be predicted quite accurately. We examine the detailed

structure of these predictable edges shortly, in Section 4.4.3.
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The CDR-C dataset shows two notable features: the dense semi-elliptical region of

predictable interactions, and a small set of highly predictable edges with F1 > 0.8 and

very low MAE values. The former is possibly an artifact of the data collection bias. Since

the CDR-C dataset sampled heavy users who made at least 3 calls a day, MAE values of

3-6 hours are not surprising due just to the frequency of calls. The latter feature is more

interesting, and it is not clear from Figure 34 whether it is somehow characteristic of the

dataset, or caused by, for example, automated systems.

The CDR-J dataset, unlike CDR-C, has no frequency-based sampling bias. It is inter-

esting to note that in spite of the fact that CDR-J contains call records of all customers in a

large geographical region, there does not seem to be a pronounced strip of highly predictable

interactions like the one in CDR-C. Instead, the cluster around F1 ∼ 0.8 and MAE ∼ 2.5

hours implies that there are a large number of edges that can be predicted with reasonable

accuracy.

Finally, the Enron dataset appears to be sparse in terms of predictable edges, although

it should be noted that the corpus is derived solely from the personal mailboxes of about

150 former Enron executives, and thus only a partial view of dynamics in the system. There

are three prominent bins of edges, which we examine in more detail in Section 4.4.3.

4.4.2.2 Predictive Relationships

Recall from Section 4.3 that we model temporal dependencies between two types of edge

pairs: autocorrelations, where an edge is both the trigger and the response, and correlations

between pairs of edges that share a common vertex. Figure 35 shows a breakdown by type
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Figure 34: Hexagonally binned bivariate histograms of the evaluation plane for each dataset,
showing the predictability of mined edges with MAE less than 6 hours on test data. Darker
bins represent more edges.

of edge pair of a window of the evaluation plane of the CDR-J dataset. In this window,

autocorrelations of the form (a, b) → (a, b) are more prominent than pairwise correlations

of the form (a, b) → (a, c), although a number of instances of the latter rank highly in

terms of predictability. This suggests that structural correlations, in addition to temporal

correlations, do exist in dynamic networks, and that these can be exploited for prediction

purposes, in agreement with the qualitative and quantitative results of prior studies (Huang

and Lin, 2009; Lahiri and Berger-Wolf, 2007).

4.4.2.3 Global performance and the η parameter

The η parameter, defined in Section 4.1.2, is the maximum allowable gain in MAE for a

unit gain in F1-score for one predicted timeline to be considered better than another. Since

it is difficult to analytically determine an ‘optimal’ value for this parameter, we ran a series

of experiments to assess the impact of the η parameter. In Table Table VII, we report the
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Figure 35: Distribution of different types of edge pairs for the CDR-J dataset.

mean values of the F1-score and MAE over all edge pairs for different values of η. Our

findings indicate that the parameter has little impact on prediction performance, either

quantitatively from Table Table VII, or qualitatively from scatterplots of the evaluation

plane.

η Mean Median
(sec.) F1 MAE # States # States

100 0.5430 3.365 ×105 2.36 2
1000 0.5446 3.366 ×105 2.42 2
10000 0.5440 3.365 ×105 2.45 2

TABLE VII: EFFECT OF VARYING η ON THE ENRON DATASET.
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One possible reason for the insensitivity of the algorithm to η is that there are few edge

pairs where different HMMs offer Pareto-optimal performance. Since the η parameter is

only invoked during model selection when one HMM does not trivially dominate another,

the insensitivity of performance to η implies that this scenario does not arise often enough

to cause a significant difference in performance. We therefore use the value of η = 1000 for

the remainder of our experiments, which corresponds to a trade-off of at most 15 minutes

in MAE for a 10% gain in F1-score when choosing the number of HMM states.

4.4.2.4 Fitted HMMs

Table Table VIII lists summary statistics of the learned models. Recall from our model

description in Section 4.3 that the validation segment is used to choose the number of HMM

states, and also between MAP and expectation-based prediction. It is interesting to note

that while expectation-based prediction yields better results on the Enron dataset, predict-

ing using the MAP method yields better performance in the CDR datasets, most notably in

CDR-J. One possible explanation is that the CDR datasets contain interactions with highly

clustered and separated delays; using an expected delay computed over multiple states could

result in a predicted delay that lies between clusters, yielding poor performance relative to

the MAP method. The reasons for this imbalance, particularly in CDR-J, warrant further

study. We also note that the mean number of states is quite low, given the allowable range

of N = [1, 3], which indicates that our model selection strategy is successfully preventing

overfitting to some degree.
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Dataset HMM states Prediction method
Mean MAP Expect. Equiv.

Enron 2.4 ± 1.07 30% 41% 29%
CDR-C 2.5 ± 1.09 40% 35% 25%
CDR-J 2.7 ± 1.16 56% 19% 25%

TABLE VIII: FITTED MODEL PARAMETERS.

4.4.3 Applications of coupled edges

4.4.3.1 The Structure of Predictable Interactions

Figure 34 shows that there are a number of accurately predictable edges in all three

networks. However, an important question is whether this is the result of genuinely inter-

esting behavioral patterns and relationships of a wide range of individuals, or whether it is

an artifact caused by, for example, an automated telemarketing or spam robot.

Figure 36 shows graph layouts of the highest ranked edges for the CDR-C and Enron

datasets. In particular, Figure 36a shows the edges of CDR-C that are predictable with an

average error of less than 10 minutes, and which comprise the dense strip in the bottom right

corner of Figure 34b. There are several hub-and-spoke structures, which could represent, for

example, call centers or businesses, but there are also a large number of isolated edges. It is

difficult to determine what kind of specific behaviors are being discovered without further

information about these nodes.

In the Enron dataset, however, we have at least partial information about the nodes.

In particular, it is generally possible to tell whether an e-mail address corresponds to an
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(a) CDR-C, F1 ≥ 0.9, MAE ≤ 10
minutes. Node colors correspond to
degree: red (1), blue (2), black (3),
etc.

leonardo.pacheco@enron.com

jeff.skilling@enron.com

kenneth.lay@enron.com

pete.davis@enron.com

kensey_subscriber@mailman.enron.com

al@friedwire.com

doctor@dictionary.com

wordoftheday@lists.lexico.com

word@m-w.com

mw-wod@listserv.webster.m-w.com

kate.symes@enron.com

mike.maggi@enron.com

noreply@ccomad3.uu.commissioner.com

feedback@intcx.com

gasindex@list.intcx.com

(b) Enron, F1 ≥ 0.6, MAE ≤ 2
hours. Unlabeled nodes are also
@enron.com addresses.

Figure 36: The structure of highly predictable edges.

automated program or to an Enron employee. Perhaps contrary to intuition, Figure 36b

shows that the hub-and-spoke structures originate mainly from human accounts, and that

several of the isolated edges are mailing lists.

Finally, the CDR-J graph layout (not pictured here) had 2,018 edges with F1 ≥ 0.7 and

MAE ≤ 2 hours, the vast majority of which were comprised of degree-1 nodes, or isolated

edges. There was a conspicuous dearth of hub-and-spoke structures, with just one such

occurrence. This is surprising because CDR-J is a more complete dataset than CDR-C

in terms of sample selection, and also more extensive in terms of geographical coverage,

but does not seem to contain highly predictable hub-and-spoke structures. We can only



204

speculate that known cultural or economic differences between the regions are responsible

for this discrepancy.

4.4.3.2 Community Identification

A node in a dynamic network may have many frequent contacts with a subset of its

neighbors, but it is often more interesting to ask what type of relationship exists between

nodes. For example, a person’s most frequent e-mail contacts could be mailing lists and

close associates. It might be difficult to tell these apart based solely on the frequency

of communication, but it may be possible to infer more based on the predictability of

interactions. The same applies to CDR datasets, where predictable phone calls suggest

that the parties involved have a specific reason for maintaining their schedule.

Among the most predictable interactions in the Enron dataset are the e-mails sent from

the pete.davis@enron.com e-mail address. Figure 37 shows the complete set of outlinks

for this e-mail address, as well as the predictive performance for each edge. Based on

performance in the test segment, there seem to be three types of edges associated with

this address. The first is a set of addresses shown in the top-left quadrant for which no

model could be learned, either because the edges were too infrequent, or if HMM training

repeatedly resulted in singularity solutions.1 While this may not be considered a specific

community, the second and largest subset of addresses is shown in the bottom two quad-

rants, and is characterized by extremely high F1-scores and low MAE values, implying a

1This is a well-known issue with the EM/Baum-Welch algorithm in general, see (Fraley and
Raftery, 2007; Rabiner, 1989) for example.
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Model Performance

a b µ1, σ1 F1 MAE
(min.) (min.)

ka..symes ev..metoyer 74.5 ± 36.6 0.631 293
mi..maggi mi..nelson 1.6 ± 3.37 0.686 49
ka..symes ke..thompson 72.3 ± 37.3 0.622 58.6
jo..griffith al..villarreal 2.18 ± 1.9 0.615 82.2
al..villarreal jo.griffith 6.77 ± 11.8 0.68 98.2

TABLE IX: HIGHEST RANKED (a, b) → (b, a) PAIRS IN THE ENRON DATASET. µ1

AND σ1 ARE THE MEAN AND VARIANCE OF ONLY THE MOST DOMINANT HMM
STATE.

high degree of predictability. The final subset is shown in the top right quadrant and is

characterized by much higher MAE values.

4.4.3.3 Relationship Classification

Table Table IX shows five of the highest-ranked edge pairs of the form (a, b)→ (b, a) in

the Enron dataset. In this case, the trigger is an e-mail, and its response is literally the reply.

In all the cases listed, the HMM consisted of one clearly dominant state. It is interesting

to note different styles of working relationships – the mean reply times vary between a

few minutes to approximately an hour. Furthermore, finding symmetric pairs among the

highest ranked interactions seems to be quite rare. This could be a result of fundamentally

asymmetric relationships – for example, between an assistant and his superior – or a result

of the fact that the Enron dataset offers only a partial view of all e-mail traffic.
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Figure 37: An egocentric e-mail network centered on pete.davis@enron.com, showing three
possible communities. Edge labels are of the form MAE(F1) with MAE in minutes; vertex
sizes are proportional to total number of e-mails sent.
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4.5 Summary

We have described a novel framework and algorithm for mining edges in dynamic net-

works that exhibit temporally predictable interaction patterns, which we call coupled edges.

Although there are a number of practical applications to our technique, we see its value

as an exploratory data analysis tool. Its power stems from using a transparent prediction

model (HMMs) with an easily interpretable structure that is grounded in the interaction

dynamics of real systems. Furthermore, even if HMMs are the wrong model for the vast

majority of edge dynamics, with apologies to the statistician George Box, there are certainly

useful for the edges that we do mine. The following is a summary of our contributions in

this chapter:

1. We formally defined the mining problem and an evaluation framework that deals with

dynamic network data in continuous time.

2. We proposed an algorithm that predicts the future occurrence time of an edge, based

on the prior occurrence times of either itself or another edge. Our algorithm models

time delays between occurrences of edges, and is thus insensitive to timescales. It

is also capable of representing and mining previously studied types of predictable

patterns, such as partial periodic patterns (Han et al., 1999; Lahiri and Berger-Wolf,

2008), and temporal association rules (Oates et al., 1997).

3. We modeled temporal dependencies between edges that share a common vertex. This

allows us to partially incorporate the structure of the network in an intuitive way,

and is rendered tractable because of the skewed degree distribution observed in real
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networks (Newman, 2003). Modeling all possible edge dependencies in real networks

is intractable.

4. We demonstrated the applicability of our method on two industrial phone call datasets,

and a publicly available e-mail dataset. Our experiments reveal that a large number

of interactions are indeed predictable, sometimes to within a few hours, and that the

structure of these interactions is quite complex. This suggests that although digitally

recorded social networks are massive, there exists within them an embedded backbone

of predictable connections that might have special meaning.



CHAPTER 5

CONCLUSION

In this thesis, we developed two new techniques for exploratory data analysis in dy-

namic networks, and exposed inherent measurement biases in a third. The focus has been

on analyzing massive dynamic network datasets to understand facets of the physical systems

that they represent. As researchers find more ways to record temporal information about

network datasets, often on a continuous streaming basis, the need for exploratory tools that

are agnostic to the source of data becomes apparent. These tools must make minimal as-

sumptions about the underlying system, and be computationally and statistically tractable.

The two new tools we develop fall into this category: the Fourier-like decomposition for dy-

namic networks in Chapter 2 assumes only the existence of locally periodic behavior, and

the coupled edges we develop in Chapter 3 extend the notion of periodicity to other types of

regular behavior. In this concluding chapter, we briefly touch upon some interesting open

questions related to each of the three techniques we explore in this thesis.

In Chapter 2, we described an inherent measurement bias in a common method for mea-

suring the graph-theoretic properties of a network over time, in the presence of even small

amounts of missing temporal data. Since most network datasets lack a complete temporal

history, this can be a significant problem when the observed (but not necessarily true) trends

in graph theoretic properties are used for model building or algorithmic optimizations, for

209
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example. We were able to show this bias through Monte Carlo simulations, and conjecture

that there is no general way to correct it. This leads to quite a few open questions:

• Are real dynamic network measurements using the growing network method accurate?

This is probably the most significant open question, and might require either looking

for secondary markers of the bias caused by a missing temporal history, domain-

specific information, or more advanced models of the dynamics of networks that take

both repeated discovery of edges and vertices, as well as the addition of new edges

and vertices, into account.

• Are there network properties that are not affected by the missing data bias? Almost

all the network properties analyzed in the literature exhibit some form of bias with

a small amount of missing data. However, spectral properties seem more resilient to

these biases. An analytical exploration of which network measures converge to their

true trends would be extremely valuable.

• How else can we measure network properties? Given that there are serious issues

with missing data in real networks, can alternative sampling schemes be developed to

give a more accurate picture of the evolution of network properties? For example, to

measure trends in the average shortest path length in a network over time, would a

sampling strategy that only considers shortest paths between specific pairs of nodes

yield a more accurate picture of network evolution than measuring the entire network?

In Chapter 3, we proposed a method for finding both the important periodicities as well

as periodic patterns in a dynamic network. In particular, our problem formulation is the first
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one that aims to describe periodic patterns without redundancy. As a result, we proved that

the enumeration and counting variants of our mining problem are in the complexity class

P, unlike several other periodic pattern mining formulations that are either #P-complete

for counting, or NP-hard for enumeration. We described an efficient algorithm to mine

these patterns and periodicities, and found a number of very intuitive periodicities in real

datasets: e-mail traffic has principal periodicities of 1 day and 7 days, web server access

logs have their highest peaks at 1 day, 7 days, and then 2 and 3 days in decreasing order.

Unsurprisingly, repeated patterns of celebrity sightings occur most frequently approximately

every 365 days.

Given the success of our algorithm at detecting periodicities in a number of diverse

datasets, there are a number of algorithmic and theoretical extensions that can be made:

• How can approximate periodicity be quantified? We proposed a heuristic mechanism to

analyze approximate periodicities, but did not analyze it theoretically. A strict com-

binatorial definition of approximate periodicity is likely to be difficult, so statistical

approaches might present a better alternative.

• Can we develop optimal, approximate, parallel or streaming versions of the mining

algorithm? These are natural extensions of the mining algorithm we proposed.

• Can we detect communities by finding periodic semi-patterns? A semi-pattern is one

which does not appear in its entirety at each timestep. For example, a group of

individuals might meet on a strictly periodic schedule, but not all members of the

group will attend every meeting. Can these ‘visitors’ be detected by association with
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the members? One way to achieve this would be to augment networks with pseudo-

nodes for periodic patterns, with edges to all vertices that are part of that pattern,

and then apply static graph link prediction to infer which other nodes are likely to be

a part of the pattern.

Finally, in Chapter 4, we described the mining of temporally coupled edges, where

the occurrence of an edge at a particular time predicts the occurrence of another edge at

a later time. We used edge dependencies defined by the line graph transformation of a

graph, the first-order differenced time series of edge occurrence times, and a novel Hidden

Markov Model formulation for this task. We were able to show that a number of edges

in real networks are predictable to a high degree, and that the network structure of these

edges is non-trivial, suggesting the existence of a ‘predictable core’ sub-network. The most

prominent open question relates to increasing the accuracy of the predictive models used.

• Can predictive models for coupled edges be made more accurate? The HMM model

we describe is a step in this direction, and extensions of HMMs such as Hidden Semi-

Markov Models (Salfner and Malek, 2007), or even completely different predictive

models, could boost the number of coupled edges that can be found.

• What are other applications for coupled edges? In Chapter 4, we demonstrated a

number of practical applications for mining coupled edges. It would be interesting

to see the extent to which they can be found in other datasets, and what temporally

predictive edges correspond to.
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• What is the network structure of coupled edges? The network structure of these edges,

in aggregate, would also be illuminating should it have a non-trivial structure or span

a large portion of the vertices in the network. We conjecture, based on the limited

experiments with our datasets, that such a backbone of predictable interactions exists

in information networks; what does this sub-network correspond to in reality, and how

effectively does it connect the network?

There are many other interesting open questions, and the increasing quantity and di-

versity of network data makes robust analytical tools indispensable. This thesis is a small

step in the development of a standard suite of such tools.
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Kempe, D., Kleinberg, J., and Tardos, É.: Maximizing the spread of influence through a
social network. In Proc. 9th ACM SIGKDD, pages 137–146, 2003.

Kleinberg, J. M.: Navigation in a small world. Nature, 406(6798):845, 2000.

Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A.: The web as a
graph: Measurements, models, and methods. In Proc. of the 5th annual Intl. Conf. on
Computing and combinatorics, pages 1–17. Springer-Verlag, 1999.

Kossinets, G.: Effects of missing data in social networks. Social Networks, 28(3):247–268,
2006.

Kossinets, G. and Watts, D. J.: Empirical analysis of an evolving social network. Science,
311(5757):88–90, January 2006.

Krishnamurthy, B., Gill, P., and Arlitt, M.: A few chirps about twitter. In Proc. of the first
workshop on Online social networks, WOSP ’08, pages 19–24, New York, NY, USA,

2008. ACM.

Kumar, A., Xu, J., and Zegura, E.: Efficient and scalable query routing for unstructured
peer-to-peer networks. In INFOCOM 2005: Proc. of the 24th Annual Joint Conf. of
the IEEE Computer and Communications Societies, volume 2, pages 1162 – 1173 vol.
2, march 2005.



224

Kumar, R., Novak, J., and Tomkins, A.: Structure and evolution of online social net-
works. In Proc. of the 12th ACM SIGKDD Intl. Conf. on Knowledge discovery and
data mining, pages 611–617. ACM New York, NY, USA, 2006.

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., and Upfal, E.:
The Web as a graph. In Proc. of the nineteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 1–10. ACM, 2000.

Kumar, R., Novak, J., and Tomkins, A.: Structure and evolution of online social networks.
In Proc. ACM SIGKDD ’06, pages 611–617, 2006.

Kuramochi, M. and Karypis, G.: Frequent subgraph discovery. In Proc. of the 2001 IEEE
Intl. Conf. on Data Mining, pages 313–320, 2001.

Lahiri, M. and Berger-Wolf, T. Y.: Structure prediction in temporal networks using
frequent subgraphs. In Proc. of IEEE Symposium on Computational Intelligence and
Data Mining, pages 35–42, 2007.

Lahiri, M. and Berger-Wolf, T.: Periodic subgraph mining in dynamic networks. Knowledge
and Information Systems, 24(3):467–497, 2010.

Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D., and Berger-Wolf, T.:
Biometric animal databases from field photographs: Identification of individual zebra
in the wild. In Proc. of the ACM Intl. Conf. on Multimedia Retr.. ACM Press, 2011.

Lahiri, M. and Berger-Wolf, T. Y.: Mining periodic behavior in dynamic social networks.
In Proc. of the IEEE Intl. Conf. on Data Mining, pages 373–382, 2008.

Langville, A., Meyer, C., and Fernández, P.: Google’s PageRank and beyond: the science
of search engine rankings. The Mathematical Intelligencer, 30(1):68–69, 2008.

Latapy, M. and Magnien, C.: Complex network measurements: Estimating the relevance
of observed properties. In Proc. IEEE INFOCOM ’08, pages 1660–1668, 2008.

Latapy, M. and Magnien, C.: Measuring fundamental properties of real-world complex
networks. CoRR, abs/cs/0609115, 2006.

Latora, V. and Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett.,
87(19):198701, Oct 2001.



225

Laxman, S., Sastry, P., and Unnikrishnan, K.: Discovering frequent episodes and learning
hidden markov models: A formal connection. IEEE Transactions on Knowledge and
Data Engineering, 17(11):1505–1517, 2005.

Laxman, S., Tankasali, V., and White, R. W.: Stream prediction using a generative model
based on frequent episodes in event sequences. In KDD ’08: Proceeding of the 14th
ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages 453–461,

New York, NY, USA, 2008. ACM.

Lehot, P. G. H.: An optimal algorithm to detect a line graph and output its root graph.
Journal of the ACM, 21(4):569–575, 1974.

Lesh, N., Zaki, M. J., and Ogihara, M.: Mining features for sequence clas-
sification. In KDD ’99: Proc. of the fifth ACM SIGKDD Intl. Conf. on Knowledge
discovery and data mining, pages 342–346, New York, NY, USA, 1999. ACM.

Leskovec, J. and Faloutsos, C.: Sampling from large graphs. In Proc. of the 12th ACM
SIGKDD Intl. Conf. on Knowledge discovery and data mining, page 636. ACM, 2006.

Leskovec, J., Kleinberg, J., and Faloutsos, C.: Graph evolution: Densification and shrinking
diameters. ACM Trans. on Knowledge Discovery from Data, 1(1):2, 2007.

Leskovec, J. and Horvitz, E.: Planetary-scale views on a large instant-messaging network.
In Proceeding of the 17th Intl. Conf. on World Wide Web, pages 915–924, New York,
NY, USA, 2008. ACM.

Leskovec, J., Kleinberg, J. M., and Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proc. of the 11th ACM SIGKDD
Intl. Conf. on Knowl. disc. and data mining, pages 177–187, 2005.

Ley, M.: The DBLP computer science bibliography: Evolution, research issues, per-
spectives. In SPIRE 2002: Proc. of the 9th Intl. Symposium on String Processing and
Information Retrieval, pages 1–10, London, UK, 2002. Springer-Verlag.

Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., and Sahoo, R.: Bluegene/l fail-
ure analysis and prediction models. Intl. Conf. on Dependable Systems and Networks,
0:425–434, 2006.



226

Liben-Nowell, D. and Kleinberg, J. M.: The link prediction problem for social networks.
In Proc. of the twelfth Intl. Conf. on Information and knowledge management, pages
556–559, New York, NY, USA, 2003. ACM.

Liu, B., Hsu, W., and Ma, Y.: Integrating classification and association rule min-
ing. In Proc. of the 4rd Intl. Conf. Knowledge Discovery and Data Mining (KDD-98),
pages 80–86. AAAI Press, 1998.

Ma, S. and Hellerstein, J. L.: Mining partially periodic event patterns with unknown peri-
ods. In Proc. of the 17th Intl. Conf. on Data Engineering, pages 205–214, Washington,
DC, USA, 2001. IEEE Computer Society.

Malmgren, R. D., Hofman, J. M., Amaral, L. A., and Watts, D. J.: Characterizing in-
dividual communication patterns. In Proc. of the 15th ACM SIGKDD Intl. Conf. on
Knowl. disc. and data mining, pages 607–616, 2009.

Mannila, H., Toivonen, H., and Inkeri Verkamo, A.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

Mannila, H., Toivonen, H., and Verkamo, A. I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

Menezes, G. V., Ziviani, N., Laender, A. H., and Almeida, V.: A geographical analysis
of knowledge production in computer science. WWW 09: Proc. of the 18th Intl. Conf.
on World Wide Web, page 1041, 2009.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In Proc. of the 7th ACM SIGCOMM
Conf. on Internet measurement, pages 29–42, 2007.

Moody, J.: The structure of a social science collaboration network: Disciplinary cohesion
from 1963 to 1999. American Sociological Review, 69(2):213, 2004.

Moreno, J. L.: Who Shall Survive?. Washington, D.C., Nervous and Mental Disease Pub-
lishing Company, 1934.

Murata, T. and Moriyasu, S.: Link prediction of social networks based on weighted proxim-
ity measures. In Proc. of the IEEE/WIC/ACM Intl. Conf. on Web Intelligence, pages
85–88, Washington, DC, USA, 2007. IEEE Computer Society.



227

Nanavati, A. A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S.,
and Joshi, A.: On the structural properties of massive telecom call graphs: findings
and implications. In Proc. of the 15th ACM Intl. Conf. on Information and knowledge
management, pages 435–444, New York, NY, USA, 2006. ACM.

Nascimento, M., Sander, J., and Pound, J.: Analysis of SIGMOD’s co-authorship graph.
ACM SIGMOD Record, 32(3):8–10, 2003.

Naumov, V., Baumann, R., and Gross, T.: An evaluation of inter-vehicle ad hoc net-
works based on realistic vehicular traces. In MobiHoc ’06: Proc. of the 7th ACM Intl.
symposium on Mobile ad hoc networking and computing, pages 108–119, New York,

NY, USA, 2006. ACM.

Nerur, S., Sikora, R., Mangalaraj, G., and Balijepally, V.: Assessing the relative influence
of journals in a citation network. Commun. ACM, 48:71–74, November 2005.

Newman, M. E. J.: Clustering and preferential attachment in growing networks. Physical
Review E, 64(2):25102, 2001.

Newman, M. E. J.: From the cover: The structure of scientific collaboration networks.
Proc. of the National Academy of Science, 98:404–409, January 2001.

Newman, M. E. J.: The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

Newman, M. E. J. and Leicht, E. A.: Mixture models and exploratory analysis in networks.
Proc. of the National Academy of Sciences, 104(23):9564, 2007.

Newman, M.: Scientific collaboration networks. II. Shortest paths, weighted networks, and
centrality. Physical review E, 64(1):16132, 2001.

Newman, M.: Analysis of weighted networks. Physical Review E, 70(5):56131, 2004.

Oates, T., Schmill, M., Jensen, D., and Cohen, P.: A family of algorithms for finding
temporal structure in data. In 6th Intl. Wkshp. on A.I. and Statistics, 1997.

Oates, T. and Cohen, P. R.: Searching for structure in multiple streams of data. In In Proc.
of the Thirteenth Intl. Conf. on Machine Learning, pages 346–354. Morgan Kaufmann,
1996.



228

O’Madadhain, J., Hutchins, J., and Smyth, P.: Prediction and ranking algorithms for
event-based network data. ACM SIGKDD Explorations Newsletter, 7(2):23–30, 2005.
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