
D
R
A
F
T

Contents

4 Mining Coupled Edges 2

4.1 Problem Definition . 3

4.1.1 Prediction . 4

4.1.2 Evaluation . 5

4.1.3 Mining . 7

4.2 Related Work . 7

4.2.1 Link Prediction . 8

4.2.2 Event Prediction . 10

4.2.3 Sequential Patterns, Frequent Episodes and Association Rules 11

4.3 Modeling time delays . 12

4.3.1 Model Setup . 13

4.3.2 HMM Structure . 16

4.3.3 Prediction . 17

4.3.4 Model selection and special cases . 18

4.3.5 Tractability . 18

4.4 Experimental Results . 19

4.4.1 Synthetic Data . 20

4.4.2 Edge coupling on real data . 21

4.4.3 Applications of coupled edges . 23

4.5 Summary . 25

1

Chapter 4

Mining Coupled Edges

In this chapter, we deal with the problem of mining strong temporal correlations between interactions in a

dynamic network, which we call coupled edges. Typical dynamic network datasets can contain thousands or

millions of edges occurring and re-occurring on a continous streaming basis. It is likely that a majority of

these edges are unpredictable with any tractable model, and yet there are likely to be interactions that are

quite regular and predictable. In a phone call network, for example, a user’s outgoing and incoming phone

calls may seem entirely random in aggregate, but there might be a regular phone call that is always made on

the first Friday of each month, or between business hours each Tuesday. Similarly, if an e-mail sent from one

person to another is frequently followed by a reply within a few hours, or a forward to a third person within

five minutes, that is evidence for a specific type of relationship between them. The crux of this chapter is

to tease out a few of these predictive, tightly coupled relationships solely from the dynamics of the network,

i.e., to extract structural correlations solely from network dynamics.

In contrast to other data mining methods, our definition of a strong temporal correlation requires a degree

of predictive power on unseen data, rather than being based on descriptive statistics. In the examples above,

the temporal correlations have to be in both directions – if an e-mail from A to B is correlated with a reply

within a few hours, it should also be that a reply from B to A is preceded by an initial e-mail from A. In

other words, an e-mail from A to B predicts a reply within a few hours. By using predictive power on unseen

data as the property of interest for data mining, we overcome a number of issues: model selection between

competing models is trivial (choose whichever model predicts unseen data better), data mining results come

with a degree of statistical generality (as opposed to being based on descriptive statistics like frequency),

and the significance of a particular mined pattern is easy to assess based on the degree of predictability.

In many cases, most interactions present in a network might be unpredictable without external infor-

mation, but the ones that are may be of scientific and commercial value. Some of these practical uses

include, for example, (i) community inference, where regular interactions between two people can signify a

special relationship between them, (ii) marketing, where advertising opportunities arise from knowing when

a particular interaction between two people is going to occur, (iii) unusual activity detection, such as churn

prediction [Wei and Chiu, 2002], which can be triggered by many of an individual’s regular interactions ceas-

ing to occur within a short period of time, (iv) detecting plausible hidden relationships, where two otherwise

unconnected interactions between different sets of individuals are found to be temporally predictive, and (v)

2

spam detection based on mechanistic and predictable interaction patterns, even when they are perturbed by

random noise.

Specific types of predictable behavior have been studied independently in the literature, and one of our

goals here is to automatically and transparently detect many such restricted subsets:

1. Periodic patterns, such as a weekly e-mail exchange between two people, which have been found at

different timescales in many types of dynamic networks [Lahiri and Berger-Wolf, 2008].

2. Bursty behavior, such as periods of inactivity followed by intense periods of activity, has been

observed in e-mail networks [Malmgren et al., 2009] and web server connections [Frias-Martinez and

Karamcheti, 2003]. Although the authors of [Malmgren et al., 2009] analyzed the aggregate behavior of

users, and not specific interactions, there are compelling intuitive reasons (such as the human diurnal

cycle) to believe that ‘bursts’ should be observed at the level of individual interactions as well.

3. Temporal association rules, where the occurrence of a particular event a leads to event b occur-

ring after a fixed time interval [Oates et al., 1997,Tung et al., 1999, Frias-Martinez and Karamcheti,

2002, Lahiri and Berger-Wolf, 2007]. A variant of temporal association rules is the frequent episode

formulation [Mannila et al., 1997a,Laxman et al., 2005].

The methods we describe in this chapter model the temporal relationships above, and also have a number

of other attractive features. A typical pre-processing step for dynamic network data is to quantize the time

stream of interactions into coarser timesteps. Where the original dataset might have a timestamp for each

edge at the resolution of about a second, typical pre-processing groups all edges into shifting windows of hours,

days, or even months (see Chapter 2 for a description of various quantization levels used in the literature).

Our techniques operate in continuous time and do not require any time quantization; no information is lost,

and the user is spared a parameter and an extra preprocessing step. Furthermore, our techniques operate on

differenced time series, i.e., by considering the time delay between edges rather than their occurrence times,

and can thus handle short- and long-range interactions seamlessly within the same framework. Finally,

our method is designed specifically for networks and takes advantage of network structure, rather than

retrofitting techniques for more limited types of data by assuming, e.g., independence of edges.

4.1 Problem Definition

We begin with interaction data in its unprocessed form: a continuous stream of interactions between uniquely

identifiable entities data at the finest possible timescale. In cases like e-mail and phone call networks, this

means that each interaction (edge) carries a timestamp on the granularity of about a second. In almost

all other types of network analysis, timestamped interactions are quantized into a coarser timescale where

timesteps comprise of hours, days, months, or even years. Multiple interactions within the same quantized

timestep are either considered a single interaction, or weighted by the count of interactions within that

timestamp. For our approach, however, we work in continuous time and do not require the user to quantize

interaction data. We see this as an advantage of our method.

The focus of our method is to mine coupled edges. Figure 4.1 illustrates a pair of edges in a dynamic

network stream that are coupled. In this case, occurences of the edge (1, 3) reliably predict occurrences of

3

1

2

4

3

1 1

3 2

1 1

3 2

1

44 4

1

4

2

44

3

Time

... ...

Figure 4.1: Streaming interaction data in continuous time with a coupled pair of edges shown in red. Note
that the coupling is directional.

edge (1, 2) after a fixed time period, even though the opposite is not necessarily true. The mining problem

is to extract these edges under two additional constraints: there is generally more noise than signal in the

dataset (i.e., most edges are likely to be uncoupled), and the temporal relationship between coupled edges

might not be a simple fixed time delay, as shown in Figure 4.1. We review other approaches that make a

fixed time delay assumption in Section 4.2.

Definition 4.1.1. (Coupled edges) An ordered pair of edges 〈E1, E2〉 is coupled if occurences of E2 can be

predicted solely from prior occurrences of E1, where possibly E1 = E2.

In the context of a data mining problem, Definition 4.1.1 is the property of interest, and we aim to develop

tractable techniques that will extract pairs of edges from large quantities of data where the property holds.

Definition 4.1.1 can be broken down into three components: how an edge is predicted, how the prediction of

a particular algorithm is evaluated, and how that translates into a mining problem. We deal with each part

in the subsequent subsections.

4.1.1 Prediction

Given a pair of candidate edges E1 and E2, we want to find the degree to which they are coupled by

measuring how well E1 predicts E2. The method of determining which edge pairs to test is part of our

solution to the problem, and is described in Section 4.3. For now, we assume that we are given an edge

pair, where E1 is called the trigger and E2 the response. Let the timelist of an edge (u, v) be the ordered

sequence of timestamps at which it occurs, denoted T (u, v). We also assume that there is significant overlap

in the timelists of the trigger and response. Without this assumption, the case of time-shifted coupling is

very hard to detect. If, for example, five instances of a trigger within an hour are coupled to five instances

of a response several hours later, it is hard to distinguish that relationship from noise, or an autocorrelation

in the response.

The timelist of the response edge is segmented into training, validation, and testing segments. The

training segment is used to learn the parameters of a model that will predict occurrences of the response

based on historical observations. The validation segment, in our formulation, is used for model selection and

to avoid overfitting, although other regularization or heuristic methods may be used as well. The prediction

problem is then as follows.

Definition 4.1.2. (Prediction) Given a set of candidate models Mi(θi) each parameterized by θi, and

training timelists for the trigger and response edges, find the optimal parameters of the model. Choose the

4

1

3

1

3

2

1

2

1

1

3 1

2

Time

......

2

1

1

3

Train Validate Test

M

M

M

a

b

c

M > M > Mab c Mb

Figure 4.2: Setup for testing the predictability of a pair of edges.

model M ′ that maximizes an evaluation score E on the validation timelists TV .

M ′ = argmax
Mi

E(Mi(θi), TV)

Note that this describes a fairly generic machine learning setup. The final segment of the timelist will

be used later for testing and mining. We use the validation segment to test the performance of multiple

prediction models on unseen data, while still withholding a final test segment to evaluate the chosen model.

A number of other statistical mechanisms can be used for model selection, such as the Bayesian Information

Criterion [Raftery, 1999], but since our final goal is to test predictable edges, using predictive performance

on unseen data is a logical choice.

4.1.2 Evaluation

A key factor of our problem formulation is that the timestamp for each observed interaction is a positive

real value, and consequently, predictions of the next occurrence of each interaction are also real values.1 As

a result, matching an edge’s predicted occurrences to its observed occurrences is non-trivial, and traditional

measures of prediction efficacy based on a confusion matrix, such as the F1-score or ROC curves, cannot be

used directly. Furthermore, since data is received on a streaming basis, predictions are made continuously and

incorporate previously seen observations, which further complicates performance evaluation. We therefore

propose a novel evaluation framework to handle both these facets of our problem.

To handle both these facets of our problem, we propose an evaluation framework that takes into account

the fact that both observations and predictions of interactions occur in continuous time, and that data is

received on a continuous, streaming basis.

For a particular edge, a prediction algorithm generates a predicted timelist TP , which is to approximate a

true (observed) timelist TT . Since the prediction algorithm also has a partial view of TT as it streams by, we

are also given a predicted from timelist TF , which contains the timestamp at which each prediction ti ∈ TP

was made, i.e., if xi is the ith element of TF and yi the ith element of TP , then the prediction algorithm

1In practice, discrete-valued epoch seconds are used as timestamps for communications networks, but our argument applies
generally to any fine-grained timescale.

5

TP TP TP

FP

FN
Time

True:

Pred:

Figure 4.3: Example of matching a true and predicted timelist in continuous time in an online setting.
Solid connecting lines are matched pairs, dotted lines are potential matches, and red lines show when each
prediction was made.

generated a prediction of time yi at time xi, where naturally yi > xi.

We first define what qualifies as a correct prediction, and subsequently the relative numbers of true

and false positives and negatives, and then how close (in continuous time) correct predictions are to their

corresponding true occurrences. This can be formulated as a matching problem, based on the following

constraints:

1. A predicted occurrence should only be matched to at most one of the true occurrences that are adjacent

to it in time, or not at all.

2. A predicted occurrence at ti cannot be matched to a true occurrence at tj if the algorithm predicted

ti at or after time tj . This is an intuitive constraint due to the online setting of the problem, and

also prevents a trivial algorithm that predicts an occurrence at tj + 1 immediately after observing an

occurrence at tj from achieving near-perfect performance.

3. The benefit of matching a true occurrence ti ∈ TT and predicted occurrence tj ∈ TP should be inversely

related to the time difference between them, e.g., as (|ti − tj | + ǫ)−1, subject to the first constraint,

and where ǫ is a small constant to ensure that the quantity is well defined for a perfect algorithm.

Specifically, the constraints above can be formalized as a weighted bipartite maximum matching prob-

lem [West, 2001]. Each element of TP and TT is represented by a node in the two corresponding partitions

of a bipartite graph. An edge connects ti ∈ TP and tj ∈ TT if they are sequentially adjacent in time (with

no other elements of TT or TP in between) and satisfy constraints 1 and 2. The edge weight of (ti, tj) is

defined as (|ti− tj |+ ǫ)−1 for some small constant ǫ. Efficient algorithms exist for finding a maximum-weight

matching in such a graph [Galil, 1986]. Figure 4.3 shows an example of the result of matching a predicted

and a true timelist, where the red loops represent the predicted from timelist.

If M is the set of matched edges, then some traditional measures are conveniently expressed in terms of

the cardinality of M , i.e., the number of matched pairs:

Precision = |M |/|TP |

Recall = |M |/|TT |

Mean Absolute Error (MAE) =
1

|M |

∑

(ti,tj)∈M

|ti − tj |

We summarize the Precision and Recall measures into their geometric mean, the F1-score, and character-

ize the performance of a prediction algorithm on a single timelist in terms of the F1-score and the MAE. The

former gives a sense of the completeness of the predictions, i.e., how well the number and temporal spacing

6

M
A
E
 (
se
co
n
d
s)

F score1
0 1

A

B

C

E

D

Figure 4.4: Some points in the evaluation plane.

of predictions approximate Tt, and the latter of their temporal accuracy. A perfect prediction algorithm

would have an F1-score of 1 and an MAE of 0. Note that it is trivial to construct cases where one quantity

is completely maximized or minimized at the cost of the other, and hence both measures need to be taken

into account. We refer to the space of (F1, MAE) pairs as the evaluation plane.

It is also often necessary to determine whether a given (F1, MAE) pair of values is in some sense ‘better’

than another pair. This is needed, for example, in comparing the performance of two different algorithms or

parameter sets, and for the final mining task described in the next subsection. The case of trivial dominance

in a ranking is straightforward: one pair will have a higher F1 score and a lower MAE than the other pair.

However, for non-trivial cases, we introduce a parameter η that specifies the relative cost of improving one

measure over the other. It can be interpreted as the maximum increase in MAE for a unit gain in F1-score

for one pair of values to dominate another. As an example, consider the evaluation plane shown in Figure 4.4,

where the point labeled A represents a perfect prediction algorithm. The slope of the line connecting C and

D is equal to η, and thus both points are considered equivalent in a ranking. Thus, an overall ranking for

the points in Figure 4.4 is: A,B,E, {C,D}.

4.1.3 Mining

Finally, we return to the mining problem of finding the most tightly coupled edges. After model selection is

done on the validation segment, the final withheld segment of testing data is used to assess the predictive

accuracy of each model. The evaluation scores on this final test segment are used to determine the order

of data mining results. Although it would seem that there are a number of tractability issues with the

mining framework described in this section, we show how to overcome them by assuming a smaller (but still

meaningful) dependency space in Section 4.3.

4.2 Related Work

In this section, we review literature directly related to mining coupled edges in dynamic networks. There

are two broad categories of related work: a similar problem in network analysis called link prediction, and a

number of approaches for other types of data that could, in principle, be applied. We outline the similarities,

differences and shortcomings of these approaches in this section.

7

4.2.1 Link Prediction

There are two variants of the link prediction problem for networks: one deals with a single graph in which

missing links are to be predicted based on some model of link formation, and another formulation that deals

with predicting links over time in dynamic networks. An important difference between static and dynamic

link prediction is that the former does not make predictions on a fine temporal scale, but rather just about

which new links are likely to be formed ‘in the future’. Both versions, however, are generally classification or

ranking problems, and as such, focus less on the interpretability of the model than predictive performance.

Although we describe both variants below, our problem has more in common with dynamic link prediction.

Static networks

The link prediction problem for static networks is defined as the question of ranking unseen edges by their

likelihood of appearance in the future, without specifying when the edges will form. It therefore deals with

the prediction of link formation, rather than the next occurrence of a link in a dynamic setting. The premise

of this approach is that social networks tend to have structural similarities throughout the network that

can be exploited to discover links that are either missing, or likely to form in the future. Liben-Nowell and

Kleinberg [Liben-Nowell and Kleinberg, 2003] were one of the first to define the link prediction problem for

social networks. They split a dynamic network along the time axis to form training and testing networks.

Various structural node and edge measures were computed on the static network created from the first half

of the dynamic network. Unobserved edges were then ranked by their probability of occurrence in the test

network. They report promising results at predicting link formation using certain graph-theoretic measures,

compared to a random and other simple baseline predictors.

A minor variation of the previous approach using weighted graph measures is described in Murata and

Moriyasu [Murata and Moriyasu, 2007]. Kashima and Abe [Kashima and Abe, 2006] build upon the work

of Liben-Nowell and Kleinberg [Liben-Nowell and Kleinberg, 2003] and others by first defining a model of

network evolution that describes each edge as a probability. An edge label function φ(t) is used to assign

probabilities of existence to each edge, and the evolution of φ over time is assumed to be a Markov process.

Specifically, a node in the network decides to ‘transfer’ an edge probability of one of its incident edges to

an edge incident on another node in the network. The parameters of the model are the probabilities of each

edge pair engaging in such a transfer. The authors describe a transductive algorithm based on Expectation-

Maximization that jointly estimates the probabilities of each ‘test’ edge as the model is learned. It is worth

noting that this model is superficially related to the triadic closure in social network analysis, which is the

assumption that open triangles in a social graph tend to close with high probability [Wasserman and Faust,

1994,Kossinets and Watts, 2006].

O’Madadhain et al. [O’Madadhain et al., 2005] address link prediction in explicitly temporal event data,

as well as the evolution of entity rank (importance) over time. For the link prediction component of their

paper, the methodology used is similar to Liben-Nowell and Kleinberg [Liben-Nowell and Kleinberg, 2003]

in that a dynamic network is split into two segments along the time axis for training and testing. However,

instead of using structural graph features to rank unseen edges as in [Liben-Nowell and Kleinberg, 2003],

O’Madadhain et al. treat the problem as a classification problem, and use both arbitrary entity attributes

(e.g. geographic proximity, similarity of publication patterns [O’Madadhain et al., 2005]) as well as structural

8

features of the graph for link prediction. The learning techniques used are Naive Bayes and logistic regression.

Finally, a number of approaches to link prediction are based on the recent paradigm of statistical relational

learning [Getoor and Taskar, 2007]. Wang et al. [Wang et al., 2007] learn undirected graphical models in the

neighborhood of a pair of nodes whose edge incidence is to be predicted. Popescul and Ungar [Popescul and

Ungar, 2003] approach the task by combining logistic regression with a feature generation algorithm that

aggregates SQL queries on node attributes to predict future edges in a bibliographic database. An overview

of work in this area can be found in Getoor et al. [Getoor et al., 2003] and Jensen and Neville [Jensen and

Neville, 2003].

Dynamic networks

Dynamic link prediction is defined as the prediction of when previously observed and new interaction are

going to occur again in the future, based on temporal and structural correlations. There are two related,

but not necessarily equivalent, variants of the structure prediction problem:

1. (Next Step Prediction) Given a dynamic network G of t timesteps, predict a set of interactions

(edges) that will occur exactly at timestep t+ 1.

2. (Next Occurrence Prediction) Given a dynamic network G of t timesteps, predict the future

timestep when each interaction will next occur.

Huang and Lin [Huang and Lin, 2009] describe a method for both variants using a combination of

static graph measures and standard time-series prediction techniques [Chatfield, 2004]. Specifically, they

fit an ARIMA2 model to the time series of binary occurrences or occurrence frequencies of each edge,

independently of all other edges. The edge occurrence scores for the next timestep are then blended with

the occurrence scores based on various static graph measures, like the ones described in Liben-Nowell and

Kleinberg [Liben-Nowell and Kleinberg, 2003]. Due to large number of edges in a typical dynamic network,

and the parameter optimization required to fit a single ARIMA model, this approach is unlikely to scale well

to realistic networks. Furthermore, their results suggest that incorporating the structure of the network,

such as the inter-dependencies between edges, into a predictive model would be advantageous. Although

time series models are generally interpretable and applicable to mining coupled edges, the approach here

would only allow the mining of coupled autocorrelations (i.e., it would not be possible to mine a coupling

between two different edges).

An interesting application of network prediction is the approach of Bunke et al. [Bunke, 2003, Bunke

et al., 2005] in network anomaly detection. Given a stream of network traffic data, they use decision trees

and ‘median graphs’ to detect connection anomalies. The trees are learned from a sequence of training data,

where no anomalies are presumed to be present. This is extended by Pincombe [Pincombe, 2005], who uses

Auto-Regressive Moving Average (ARMA) techniques instead. Since their focus is on predictive accuracy,

their approach is not applicable to our mining problem.

Phithakkitnukoon and Dantu [Phithakkitnukoon and Dantu, 2007] propose a method for predicting

whether a phone user will receive an incoming call at various hours of the day, without attempting to predict

who the call is originating from. They make various simplifying assumptions, such as the call inter-arrival

2Autoregressive Integrated Moving Average

9

time and the number of outgoing calls per incoming call both following a Gaussian distribution. They report

an error rate of approximately 5% on the call logs of 20 individuals, with no recall or specificity values.

Lahiri and Berger-Wolf [Lahiri and Berger-Wolf, 2007] describe an online technique that probabilistically

estimates the delay between pairs of edges and uses this delay to predict a set of edges that will appear at

an arbitrary point in the future. To aid the tractability of the approach, they measure the delay between

frequent subgraph pairs instead of edge pairs. A simple heuristic mechanism dynamically adjusts which

edge/frequent subgraphs pairs are used to make predictions. A limitation of this approach is that frequent

subgraphs, or generally subgraphs of interest, have to be pre-specified. This limitation can be overcome by

restricting the edge pair correlation to pairs of edges that are likely to be correlated, e.g. those edge pairs

that share a common vertex.

Finally, Acar et al. [Acar et al., 2009] describe the use of matrix and tensor decompositions for solving

both static and dynamic link prediction problems. For the static variant, they use a truncated low-rank

Singular Value Decomposition (SVD) of a time-weighted graph, and then predict future edge formation by

the scores of each (i, j) entry in the reconstructed matrix. Although the SVD of a sparse matrix can be

computed very quickly, re-assembling all link prediction scores in the most general case requires iterating over

all cells in the adjacency matrix, an intractable O(V 2) operation for large networks. For the dynamic variant

of the problem, they use standard time series prediction on the coefficients of a CANDECOMP/PARAFAC

(CP) tensor decomposition of a dynamic network (see [Faber et al., 2003] for a recent review). Although

this requires choosing some parameters, it has the advantage that CP tensor decompositions carry a lot of

easily interpretable information and can be used for data mining.

As we noted before, the prediction algorithms presented here, with the exception of the CP tensor

decomposition of [Acar et al., 2009] and the structure prediction approach of [Lahiri and Berger-Wolf, 2007],

are generally black boxes from which it is difficult to extract meaningful relationships between edges.

4.2.2 Event Prediction

Event prediction aims to learn signatures that precede certain target events in a stream of symbolic or

numerical data. The overall goal is to be able to predict occurrences of specific events before they happen,

such as fraud, hardware failure, or intrusion into a computer network, by monitoring a stream of log messages.

It can be seen as a special case of dynamic network next-step prediction, where we do not want to predict the

entire graph at timestep t in a dynamic network, but just a specific part of it. y It is also more specialized

in the sense that it generally deals with low-dimensionality streams, and can sometimes be treated as a

conventional supervised learning problem. As a result, much of the work in this area has focused on specific

applications instead of general techniques.

Fawcett and Provost [Fawcett and Provost, 1999] call this class of problems ‘activity monitoring’, and

outline several important issues in how it differs from conventional classification problems. Among their

contributions are a generic framework for modeling event prediction problems and an illustration of how

prediction performance should be quantified. They point out that using accuracy or error to judge the

merits of an event prediction model has its shortcomings, and suggest using ROC curves [Fawcett, 2004] or

a specialized variation for activity monitoring, the AMOC curve [Fawcett and Provost, 1999].

A number of approaches to event prediction use conventional classifiers like Support Vector Machines

(SVMs) or rule-based ones built from mining association rules, especially in the context of hardware failure

10

prediction from event logs and network intrusion prediction. Vilalta and Ma [Vilalta and Ma, 2002] mine

frequent events from a time window preceding target events, and then combine these rules into a classifier.

Domeniconi et al. [Domeniconi et al., 2002] combine Singular Value Decomposition on the co-occurrence

of events with an SVM to phrase the problem as a conventional classification problem. Liang et al. [Liang

et al., 2006] look for simple correlations in failure patterns in supercomputer hardware event logs. A more

sophisticated approach to the same problem using Hidden Semi-Markov Models is adopted by Salfner and

Malek [Salfner and Malek, 2007]. Finally, an interesting approach in a different, numerical time-series

domain involves using a support feature machine to perform subset selection as well as prediction of target

events [Chaovalitwongse et al., 2007].

Various forms of intrusion detection in computer network traffic analysis can also be thought of as event

prediction, where the ‘event’ being predicted is an anomalous usage pattern indicative of an intrusion.

Kannadiga et al. [Kannadiga et al., 2007] treat the intrusion prediction problem in much the same way as

the event prediction approaches mentioned earlier, although the connection is not explicit. Given a stream

of network traffic data, Bunke et al. [Bunke, 2003,Bunke et al., 2005] use decision trees and median graphs

to detect anomalies. This is extended by Pincombe [Pincombe, 2005], who uses Auto-Regressive Moving

Average (ARMA) techniques instead.

A major limiting factor in modeling dynamic network data as a log stream is scalability. Naively, one

might consider each edge in a dynamic network as a type of log symbol, much like the itemset representation

mapping we used in Chapter 3. However, there are two problems with this: all structural information about

the graph is lost, and the number of symbols scales with the number of unique edges. Since many of the

approaches mentioned in this section were designed with relatively small alphabets in mind, they might not

scale well when the alphabet size increases to hundreds of thousands or even millions of edges. Furthermore,

since we cannot exploit network structure to reduce the space of dependencies, the sheer number of possible

dependencies between symbols quickly becomes intractable.

4.2.3 Sequential Patterns, Frequent Episodes and Association Rules

Mining association rules and various forms of frequent patterns are probably among the oldest and best

studied problems in data mining. Association rules in the form of a → b are expressions of the conditional

probability of co-occurrence of sets of events [Agrawal and Srikant, 1994,Brin et al., 1997]. A generalization of

this question considers temporal association rules where a and b occur in different transactions or timesteps,

usually accompanied by an estimate of the distance or delay between them [Tung et al., 1999,Oates et al.,

1997,Oates and Cohen, 1996]. Frequent episodes are frequently occurring temporal partial orders of events,

where the entire partial ordered must be matched within a fixed time window [Mannila et al., 1997b].

Frequent sequential patterns are also closely related to frequent episodes [Pei et al., 2004,Harms and Deogun,

2004].

Tung et al. [Tung et al., 1999] introduce the mining of inter-transactional association rules, where

the antecedent and consequent of the rule consist of disjoint itemsets and are separated by a temporal

interval. They describe an algorithm where a user-defined parameter W controls the maximum allowable

delay between the sides of each rule, and the confidence of the rule expressed the conditional probability of

seeing the antecedent in at most W timesteps. Similarly, Oates et al. [Oates et al., 1997,Oates and Cohen,

1996] introduce almost identical notation for what they call temporal dependencies. The difference from

11

Tung et al. is that instead of having a window in which both antecedent and consequent must occur, the

rules express the actual delay to expect between the antecedent and the consequent.

Both association rules and frequent episodes can used to build rule-based predictive models, usually

by taking some subset of the most frequently occurring associations. An early system for building such a

rule-based prediction model was CBA [Liu et al., 1998], which is a non-temporal methodology that operates

on transactional databases. Association rules can also be used as a type of feature generation process to

aid further classification [Lesh et al., 1999]. More recently, a connection between frequent episodes and

Hidden Markov Models has been made, with applications in building a predictive model for streaming

data [Laxman et al., 2008, Laxman et al., 2005]. They model a stream of events using a mixture model of

frequent episodes mined from the stream, with sequential correlation between the mixtures. We build on

their ideas by modeling the delays between interactions in a network, instead of modeling the occurrences

of events themselves.

Mining algorithms for association and related rules generally use support (empirical frequency) as the

property of interest, although a wide variety of other measures have been developed [Geng and Hamilton,

2006]. Our mining formulation varies from these approaches in that it does not use descriptive statistics on

a single dataset as the mining criteria, but rather predictive models and performance on an unseen segment

of data. Our approach also differs from mining approaches such as [Oates et al., 1997] and [Laxman et al.,

2008] because we explicitly take advantage of the network structure of data. As mentioned in the previous

section, although it is possible to retrofit dynamic networks into a multidimensional discrete symbol stream

that can be mined by some of these algorithms, all connectivity information (and subsequently the ‘symbol’

dependency structure) is lost in such a transformation. The space of possible rules is therefore much larger

when the methods described in this section are applied, making the algorithms more intractable. Finally,

even though our coupled edge rules superficially resemble the a → b rules mined by [Oates et al., 1997], the

→ operator in our case can be a complex HMM-modeled sequential dependency, instead of a fixed constant

as used by [Oates et al., 1997] and [Tung et al., 1999].

4.3 Modeling time delays

We now present our primary contribution in this chapter: a flexible model of regular behavior, which

encompasses many previously studied forms of predictable patterns, is insensitive to the timescale at which

such patterns occur, and does not require time to be discretized. It is a means for solving the prediction

part of the mining problem described in Definition 4.1.2, and is the core of our mining algorithm.

Consider the two timelists shown in Figure 4.5, which are typical examples of interactions that can be

modeled easily for future prediction. The upper timelist is an example of an interaction that occurs in

‘bursts’, such as a phone call between two people that occurs mainly during business hours. The lower

timelist is an example of a periodically recurring interaction. Our model is based on three assumptions

about these timelists: first, that the time delays between consecutive occurrences are drawn from a mixture

distribution, second, that there is significant sequential correlation between consecutive time delays, and

finally, that the dynamics of a particular edge are stationary for as long as the edge persists.

We describe a novel Hidden Markov Model [Rabiner, 1989] (HMM) formulation for modeling time delays

between a trigger and a response edge, denoted ET = (u, v) and ER = (x, y) respectively, and collectively

12

Time

Figure 4.5: Examples of timelists.

referred to as an edge pair. ET and ER do not have to be solitary or even distinct interactions, but could

also be, for example, frequently occurring subgraphs of interactions, or external events, such as ET =

{First day of month} and ER = (a, b).

We model independent temporal dependencies over two types of edge pairs: those in which ET = ER =

(u, v), or autocorrelations, and pairs in which ET 6= ER. On observing an occurrence of ET at time t, an

HMM with continuous emissions specific to the ET → ER edge pair is used to generate a time delay δ ∈ R
+

until the next occurrence of ER, thus generating a prediction of ER at time t + δ. Depending on its state,

however, the HMM might also not generate a prediction at all, which allows more complex relationships to

be modeled. We refer the reader to Rabiner [Rabiner, 1989] for more background on canonical HMMs and

the notation used here.

A key contribution of our formulation is to model time delays between interactions using an HMM, instead

of the more conventional approach of directly modeling the presence or absence of an interaction at each

discrete timestep [Bunke et al., 2005,Huang and Lin, 2009]. By dealing with this higher-order representation,

we overcome two problems that affect dynamic network analysis: the need to quantize interactions into

discrete timesteps, and the fact that regular behavior can exist at different timescales [Lahiri and Berger-

Wolf, 2008], which can be missed by approaches that use fixed length windows of real time for learning. As

a result, it offers significant benefits over other conventional approaches and mining methodologies: there is

no need to determine how far back in real time a model should retain data for learning, as is the case with

time-series models [Huang and Lin, 2009], and there is no need to determine how much real time should be

quantized into a timestep [Lahiri and Berger-Wolf, 2007,Huang and Lin, 2009,Bunke et al., 2005].

4.3.1 Model Setup

Given a trigger timelist T (ET) = 〈t1, ..., tA〉 and a response timelist T (ER) = 〈r1, ..., rB〉, we first compute

a set of delay pairs that generate or approximate T (ER) based on T (ET). Each delay pair is generated by a

trigger event and is of the form 〈ct, dt〉, where ct is a binary value and dt is a non-negative continuous value.

The delay pair represents the action that a prediction algorithm should take to generate a response event at

the correct time. If ct = 0, then no response should be predicted. Otherwise, a response should be predicted

to occur after a delay of dt from the current time. The following algorithm computes a sequence of delay

pairs from two timelists.

1. Sort the two timelists together into a single timelist T = 〈t1, ..., tA+B〉. In cases of ties, sort responses

before triggers. Let type(ti) = trig if element ti came from the trigger timelist, and type(ti) = resp

otherwise.

2. For each element ti in the sorted timelist, where i < A+B and type(ti) = trig :

(a) If type(ti+1) = trig, output the delay pair 〈0, 0〉.

13

N number of HMM states
AN×N HMM state transition matrix
πk Initial probability of HMM state k
µk, σ

2
k mean and variance of Gaussian emission distribution in state k

τk probability of a continuous delay emission in state k
λ set of all HMM parameters (all the above)
qt ∈ [1, N] HMM state at time t
φ(µ, σ2) Gaussian density with parameters (µ, σ2)
ot = 〈ct, dt〉 HMM emission at time t consisting of binary ct and continuous dt ≥ 0
bk(ot) Probability of emission ot from state k
αi(t) Forward variable; joint probability of observations up to time t and final state i
Γi(t) Probability that emission at time t was generated by state i, given data up to t
γi(t) Probability of being in state i at time t, given the entire sequence of observations

Table 4.1: NOTATION USED FOR HMM FORMULATION.

(b) Otherwise, output the delay pair 〈1, ti+1 − ti〉.

Note that if ET = ER, then ct = 1 always. Figure 4.6 illustrates the generation of delays pairs from a

trigger and response timelist.

14

A)

<1,d>

E =(u,v)T

E =(u,v)R

Time

Emissions: <1,d> <1,d>

<1,d>

E =(u,v)T

E =(x,y)R

Emissions: <1,d> <0,0>

E =(u,v)T

E =(x,y)R

Emissions: <1,d> <1,d><0,0>

C) D)

B)

<1,d >

E =(u,v)T

E =(u,v)R

Emissions: <1,d > <1,d >1 12

Special case HMM states Example Transition Matrix Emission Probabilities
(A) Partial periodic patterns 1

(

1
)

µ1 = d (period) τ1 = 1

(B) Bursty behavior 2

(

0.2 0.8
0.9 0.1

)

µ1 = d1 τ1 = 1
µ2 = d2 τ2 = 1

(C) Temporal association rules 1
(

1
)

µ1 = d1 τ1 = 1

(D) Complex temporal association rules 2

(

0 1
1 0

)

µ1 = 0 τ1 = 0
µ2 = d τ2 = 1

Figure 4.6: Special cases of structure prediction, with corresponding HMM delay pair emissions. Red lines indicate time delays. The table
shows examples of delay prediction HMMs that handle the special cases.

15

4.3.2 HMM Structure

Given a sequence of delay pairs, we use an HMM to model the sequence, where the emissions of the HMM

are the delay pairs, and the hidden states correspond to different distributions (clusterings) over time delays.

Let the emission of the HMM at position t be denoted ot = 〈ct, dt〉, where ct ∈ {0, 1} and dt ∈ R. Unlike a

typical HMM which generates emissions at every timestep of a discrete time process, our formulation calls

for an emission on every incident of a trigger ET being observed, with the continuous part of the emission

specifying a time delay to the next occurrence of the response ER, conditional on the binary part of the

delay pair being true. When ct = 0, the value of dt is irrelevant, and we define it to be 0 for notational

convenience. We chose a univariate Gaussian distribution to model the continuous delays emitted in each

hidden state, conditional on ct = 1, but any univariate continuous distribution may be substituted in its

place without changing the framework.3

The distribution of emissions in each hidden state is governed by three parameters: τk, µk, σk.

P [ct = 1|qt = k] = τk

P [ct = 0, dt = 0|qt = k] = 1− τk

P [dt|qt = k, ct = 1] ∼ φ(µk, σ
2
k)

Assume that the HMM has N hidden states, with λ representing the set of all HMM parameters (see

Table 4.1). Based on the expression above, the probability bk of an emission ot = 〈ct, dt〉 from state k is

defined as:

P [ot|qt = k, λ] = bk(〈ct, dt〉)

=

{

τkφ(µk, σ
2
k) : ct = 1

(1− τk) : ct = 0
(4.1)

In standard HMM theory, the Baum-Welch algorithm is used to estimate maximum-likelihood parameters

for an HMM from data, given the number of states N and a suitable parametric form of the emission

density bk at each state k. The emission density in Equation 4.1 is one such suitable parametric form, and

the standard Baum-Welch algorithm can be used to estimate HMM parameters from a sequence of paired

emissions O = 〈o1 = 〈ct, dt〉, ..., oT 〉 calculated from the training network segment. The derivation is identical

to that of the canonical Baum-Welch algorithm [Rabiner, 1989], and we only list the final parameter update

equations in terms of delay pairs (the M-step of the Baum-Welch EM algorithm) for completeness. Refer to

3Note that although call durations appear to be distributed according to a log-logistic function [Vaz de Melo et al., 2010],
we model the time between call initiations.

16

Table 4.1 for notation.

µi =

∑T

t=1 γi(t)(ct · dt)
∑T

t=1 γi(t) · ct

σ2
i =

∑T

t=1 γi(t)(ct · (dt − µi)
2)

∑T

t=1 γi(t) · ct

τi =

∑T

t=1 γi(t) · ct
∑T

t=1 γi(t)

4.3.3 Prediction

Once the Baum-Welch algorithm has been used to estimate HMM parameters on the training segment, we

use the learned model to make predictions on the validation or test segments. We know from the Forward

procedure in HMM training that the forward variable αi(t) = P [Ot, qt = i|λ], which is the joint probability

of the observation sequence ending in the state i at time t. We also know that P [OT |λ] =
∑N

i=1 αi(T), which

is exactly the output of the Forward procedure. In an online setting, marginalizing the α variables yields

the probability of being in a particular state i at time t, which we denote Γi(t)
4.

Γi(t) = P [qt = i|Ot, λ] =
αi(t)

∑

j αj(t)
(4.2)

The Γ variables define a distribution over the states that caused the last observed emission. For prediction,

however, we require the next likely emission, which in turn requires a distribution over the next state,

i.e., P [qt+1|Ot, λ]. This is easily computed from the HMM transition matrix and the αi(t) variables [Rabiner,

1989], following which we use two different methods to generate the next emission (delay prediction):

1. (Expectation) We first compute the expected probability of the next emission having a continuous

component by averaging over the continuous emission probability τi of each state:

E[ct+1] =
∑

i

P [qt+1 = i|Ot, λ] · τi

If E[ct+1] > 0.5, then we assume that the next emission will produce a time delay, so we compute dt

as the expected delay over all HMM states.

E[dt+1] =
∑

i

P [qt+1 = i|O, λ] · µi

The final prediction is then

ot+1 =

{

〈1, E[dt+1]〉 : E[ct+1] > 0.5

〈0, 0〉 : E[ct+1] ≤ 0.5

2. (Maximum a posteriori) Instead of computing an expected delay over all states, we can instead pick

the most likely next state q′ and generate an emission from it. This might be preferable in some cases,

4Γi(t) is distinct from the γi(t) variable in the Baum-Welch algorithm, which takes backward probabilities into account.

17

since delay predictions will not lie in between the expected delays of each HMM state, but will rather

be drawn from a single HMM state.

q′ = argmax
i

P [qt+1 = i|O, λ]

ot+1 =

{

〈1, µq′〉 : τq′ > 0.5

〈0, 0〉 : τq′ ≤ 0.5

4.3.4 Model selection and special cases

The only parameter in the learning and prediction processes described in the previous sections, other than

the global (F1, MAE) trade-off parameter η, is the number of HMM states N for each trigger-response pair,

and whether to use maximum a posteriori (MAP) or expectation to generate predictions. In general, the

number of HMM states and its connection topology is generally determined either by prior domain knowledge

or other, sometimes heuristic, mechanisms [Rabiner, 1989]. However, since our objective is prediction, we fit

models of various state sizes up to a small maximum number, using both MAP and expectation to generate

predictions, and then choose the combination that produces the highest ranked (F1, MAE) pair on the

validation segment. The allows us to select a specific model, and also helps avoid overfitting on the training

data.

The value that we suggest for the maximum number of HMM states is based on both a theoretical and an

empirical argument. Figure 4.6 shows a number of special case HMMs that cover many previously studied

types of regular behavior. In all the cases shown, two HMM states are sufficient to model interaction dynam-

ics, suggesting that the maximum number of states to attempt fitting can be similarly low. Furthermore, a

3-state HMM in our formulation has 17 non-trivial parameters to estimate, so if the timelists of interactions

are not sufficiently long, then the inference of parameters is likely to be noisy. In the datasets we examine,

we found typical timelists to be quite short, which again supports the use of a small maximum number of

HMM states. For these reasons, we suggest that a maximum of 3-state HMMs be used to model interaction

dynamics in networks comparable to the ones we analyze here.

4.3.5 Tractability

With single interactions comprising ET and ER, the approach above is not computationally tractable even

for relatively small networks with about 104 unique edges. We overcome this using two methods: the first

is to only consider edges with timelists long enough to support meaningful statistical inference. Generally,

this means that the number of available timelist points should be at least a reasonable constant factor larger

than the number of HMM parameters to be estimated. As we will show in Section ??, this eliminates a large

number of the edges in real networks. The second method is to only consider temporal correlations between

pairs of interactions where, (a) ET = ER = (u, v), or autocorrelations, and (b) ET = (u, v) and ER = (u,w),

or pairs of interactions that share a common node.

Modeling correlations between pairs of edges that share a common vertex is tractable as a side effect

of the skewed degree distributions observed in many real-world networks [Newman, 2003]. The number of

delay pairs D is equal to the number of edge pairs that share a vertex, which is exactly the number of edges

18

100

101

102

103

104

105

106

107

 1 10 100 1000 10000
F

re
qu

en
cy

Edge support (timelist length)

CDR-C
CDR-J
Enron

0.4

0.6

0.8

1

100 101 102 103 104

P
(s

up
po

rt
 ≤

 x
)

Edge support

Figure 4.7: Edge support distributions: histogram on a doubly logarithmic scale, and empirical cumulative
distribution on a partial logarithmic scale (inset).

in the line graph5 of the original network. This number D in turn is proportional to the sum of the squares

of degrees in the original graph [Lehot, 1974], i.e., D =
∑|V |

i=1
di(di−1)

2 , where di is the degree of vertex i.

Modeling all such dependencies in real-world networks is therefore tractable if the assumption of a degree

distribution skewed towards smaller degrees holds, as it generally has been found to [Newman, 2003,Leskovec

and Horvitz, 2008,Nanavati et al., 2006,Chakrabarti and Faloutsos, 2006].

We also note that our algorithm is trivially parallelizable, and should scale linearly with the number of

processors used.

4.4 Experimental Results

We ran our mining algorithm on the datasets described in the previous section to determine the extent to

which edges in real networks are predictable. We describe two types of results: those specific to our learning

algorithm, and applications of mining predictable interactions in general.

In all cases, we designated consecutive thirds of the timelist of each edge to serve as training, validation,

and test segments, with the results of mining determined by performance only on the test segment. The

maximum number of HMM states to fit is set to 4, in line with the reasons described in Section 4.3. We also

require that all edges have timelists of length at least 40 in order to be used for learning and prediction. As

shown in Figure 4.7, all three datasets show a commonality in terms of heavy skews in the support (timelist

length) distribution of edges: only a small percentage of edges in each dataset have timelists of 40 occurrences

or more.

Finally, we determined empirically that the η parameter has little impact on prediction performance,

either quantitatively in terms of the mean and median (F1, MAE) scores over all edges, or qualitatively

in terms of the most predictable edges. We omit the results for brevity, but one possible reason for the

insensitivity of the algorithm to η is that there are few edge pairs where different HMMs or parameter sets

offer Pareto-optimal performance for predicting interactions. We therefore use a value of η = 1000 for our

experiments, which corresponds to a trade-off, in our implementation, of at most 15 minutes in MAE for an

5Recall that the line graph of graph G = (V,E) contains a vertex v′
i
for every edge e ∈ E in G, with an edge connecting v′

1

and v′
2
in the line graph if the corresponding edges e1, e2 ∈ E in the original graph share a common vertex.

19

Noise 1 State 2 States 3 States

0.
70

0.
80

0.
90

1.
00

True Model

F
−

sc
or

e

Noise 1 State 2 States 3 States

0
20

00
0

50
00

0

True Model

M
A

E

Figure 4.8: Fitted model test error on synthetic data.

increase of 0.1 in F1-score.

We ran two sets of experiments to test our algorithm. The first set is on synthetic data to show that our

algorithm is able to distinguish between noise and regular interactions of the type described in Section 4.3.

The second set of experiments is performed on the real datasets described in the previous section, and

illustrates a number of practical applications.

4.4.1 Synthetic Data

We created synthetic data by randomly generating HMMs of the type described in Section 4.3. We created

a different edge for each HMM, and placed 1,000 instances of the interaction on a timeline by iterating the

HMM to generate delays. A total of 600 such interactions were generated by HMMs of 1, 2, and 3 states, in

equal proportions, which encompasses the special cases shown in Figure 4.6. Finally, 200 additional ‘noise’

interactions were created by placing instances of the interaction uniformly at random on the timeline.

We designated consecutive thirds of the timeline of each interaction to serve as training, validation, and

test segments. Figure 4.8 shows the distribution of F-1 and MAE scores of the fitted models for each type

of edge on the test segment, where the boxes represent the interquartile range of the data. There is a clear

differentiation between the MAEs of interactions generated by HMMs and those generated randomly. In the

left figure, the ‘noise’ edges have the lowest F-1 score and the highest MAE, corresponding to the lower left

part of the evaluation plane. Edges generated by a 1-state HMM, which is essentially an autocorrelated edge

with a Gaussian time delay, have the highest scores. Even 3-state HMMs, which can generate a complex

pattern of delays, are detected with greater efficacy – certainly in terms of MAE, and in a statistically

significant way (as indicated by interquartile ranges) in terms of F-1 scare. This confirms that our algorithm

and mining methodology can identify the class of regular behavior that encompassed by delay-generating

HMMs.

20

F1

M
A

E
 (

ho
ur

s)
0

1
2

3
4

5
6

0.0 0.2 0.4 0.6 0.8 1.0

(a) Enron

F1

M
A

E
 (

ho
ur

s)
0

1
2

3
4

5
6

0.0 0.2 0.4 0.6 0.8 1.0

(b) CDR-C

F1

M
A

E
 (

ho
ur

s)
0

1
2

3
4

5
6

0.0 0.2 0.4 0.6 0.8 1.0

(c) CDR-J

Figure 4.9: Hexagonally binned bivariate histograms of the evaluation plane for each dataset, showing the
predictability of mined edges with MAE less than 6 hours on test data. Darker bins represent more edges.

4.4.2 Edge coupling on real data

Evaluation Planes

Figure 4.9 shows bivariate histograms of the evaluation planes for each dataset, truncated above an MAE

value of 6 hours. Recall that the point (1, 0) represents perfect prediction, so we are mainly interested in the

distribution of edges at the lower right corner of the plane. Our first observation is that edges do exist in

this region, implying that networks contain edges whose occurrences can be predicted quite accurately. We

examine the detailed structure of these predictable edges shortly, in Section 4.4.3.

The CDR-C dataset shows two notable features: the dense semi-elliptical region of predictable interac-

tions, and a small set of highly predictable edges with F1 > 0.8 and very low MAE values. The former is

possibly an artifact of the data collection bias. Since the CDR-C dataset sampled heavy users who made at

least 3 calls a day, MAE values of 3-6 hours are not surprising due just to the frequency of calls. The latter

feature is more interesting, and it is not clear from Figure 4.9 whether it is somehow characteristic of the

dataset, or caused by, for example, automated systems.

The CDR-J dataset, unlike CDR-C, has no frequency-based sampling bias. It is interesting to note that

in spite of the fact that CDR-J contains call records of all customers in a large geographical region, there

does not seem to be a pronounced strip of highly predictable interactions like the one in CDR-C. Instead,

the cluster around F1 ∼ 0.8 and MAE ∼ 2.5 hours implies that there are a large number of edges that can

be predicted with reasonable accuracy.

Finally, the Enron dataset appears to be sparse in terms of predictable edges, although it should be noted

that the corpus is derived solely from the personal mailboxes of about 150 former Enron executives, and thus

only a partial view of dynamics in the system. There are three prominent bins of edges, which we examine

in more detail in Section 4.4.3.

Predictive Relationships

Recall from Section 4.3 that we model temporal dependencies between two types of edge pairs: autocorrela-

tions, where an edge is both the trigger and the response, and correlations between pairs of edges that share

a common vertex. Figure 4.10 shows a breakdown by type of edge pair of a window of the evaluation plane

of the CDR-J dataset. In this window, autocorrelations of the form (a, b) → (a, b) are more prominent than

21

F1

M
A

E
 (

ho
ur

s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9 1.0

(a) (a, b) → (a, b)

F1

M
A

E
 (

ho
ur

s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 0.6 0.7 0.8 0.9

(b) (a, b) → (a, c)

Figure 4.10: Distribution of different types of edge pairs for the CDR-J dataset.

pairwise correlations of the form (a, b) → (a, c), although a number of instances of the latter rank highly in

terms of predictability. This suggests that structural correlations, in addition to temporal correlations, do

exist in dynamic networks, and that these can be exploited for prediction purposes, in agreement with the

qualitative and quantitative results of prior studies [Huang and Lin, 2009,Lahiri and Berger-Wolf, 2007].

Global performance and the η parameter

The η parameter, defined in Section 4.1.2, is the maximum allowable gain in MAE for a unit gain in F1-score

for one predicted timeline to be considered better than another. Since it is difficult to analytically determine

an ‘optimal’ value for this parameter, we ran a series of experiments to assess the impact of the η parameter.

In Table 4.2, we report the mean values of the F1-score and MAE over all edge pairs for different values of η.

Our findings indicate that the parameter has little impact on prediction performance, either quantitatively

from Table 4.2, or qualitatively from scatterplots of the evaluation plane.

η Mean Median
(sec.) F1 MAE # States # States
100 0.5430 3.365 ×105 2.36 2
1000 0.5446 3.366 ×105 2.42 2
10000 0.5440 3.365 ×105 2.45 2

Table 4.2: EFFECT OF VARYING η ON THE ENRON DATASET.

One possible reason for the insensitivity of the algorithm to η is that there are few edge pairs where

different HMMs offer Pareto-optimal performance. Since the η parameter is only invoked during model

selection when one HMM does not trivially dominate another, the insensitivity of performance to η implies

that this scenario does not arise often enough to cause a significant difference in performance. We therefore

use the value of η = 1000 for the remainder of our experiments, which corresponds to a trade-off of at most

15 minutes in MAE for a 10% gain in F1-score when choosing the number of HMM states.

22

Fitted HMMs

Table 4.3 lists summary statistics of the learned models. Recall from our model description in Section 4.3

that the validation segment is used to choose the number of HMM states, and also between MAP and

expectation-based prediction. It is interesting to note that while expectation-based prediction yields better

results on the Enron dataset, predicting using the MAP method yields better performance in the CDR

datasets, most notably in CDR-J. One possible explanation is that the CDR datasets contain interactions

with highly clustered and separated delays; using an expected delay computed over multiple states could

result in a predicted delay that lies between clusters, yielding poor performance relative to the MAP method.

The reasons for this imbalance, particularly in CDR-J, warrant further study. We also note that the mean

number of states is quite low, given the allowable range of N = [1, 3], which indicates that our model selection

strategy is successfully preventing overfitting to some degree.

Dataset HMM states Prediction method
Mean MAP Expect. Equiv.

Enron 2.4 ± 1.07 30% 41% 29%
CDR-C 2.5 ± 1.09 40% 35% 25%
CDR-J 2.7 ± 1.16 56% 19% 25%

Table 4.3: FITTED MODEL PARAMETERS.

4.4.3 Applications of coupled edges

The Structure of Predictable Interactions

Figure 4.9 shows that there are a number of accurately predictable edges in all three networks. However, an

important question is whether this is the result of genuinely interesting behavioral patterns and relationships

of a wide range of individuals, or whether it is an artifact caused by, for example, an automated telemarketing

or spam robot.

Figure 4.11 shows graph layouts of the highest ranked edges for the CDR-C and Enron datasets. In

particular, Figure 4.11a shows the edges of CDR-C that are predictable with an average error of less than

10 minutes, and which comprise the dense strip in the bottom right corner of Figure 4.9b. There are several

hub-and-spoke structures, which could represent, for example, call centers or businesses, but there are also a

large number of isolated edges. It is difficult to determine what kind of specific behaviors are being discovered

without further information about these nodes.

In the Enron dataset, however, we have at least partial information about the nodes. In particular, it is

generally possible to tell whether an e-mail address corresponds to an automated program or to an Enron

employee. Perhaps contrary to intuition, Figure 4.11b shows that the hub-and-spoke structures originate

mainly from human accounts, and that several of the isolated edges are mailing lists.

Finally, the CDR-J graph layout (not pictured here) had 2,018 edges with F1 ≥ 0.7 and MAE ≤ 2 hours,

the vast majority of which were comprised of degree-1 nodes, or isolated edges. There was a conspicuous

dearth of hub-and-spoke structures, with just one such occurrence. This is surprising because CDR-J is

a more complete dataset than CDR-C in terms of sample selection, and also more extensive in terms of

geographical coverage, but does not seem to contain highly predictable hub-and-spoke structures. We can

23

(a) CDR-C, F1 ≥ 0.9, MAE ≤ 10 min-
utes. Node colors correspond to degree:
red (1), blue (2), black (3), etc.

leonardo.pacheco@enron.com

jeff.skilling@enron.com

kenneth.lay@enron.com

pete.davis@enron.com

kensey_subscriber@mailman.enron.com

al@friedwire.com

doctor@dictionary.com

wordoftheday@lists.lexico.com

word@m-w.com

mw-wod@listserv.webster.m-w.com

kate.symes@enron.com

mike.maggi@enron.com

noreply@ccomad3.uu.commissioner.com

feedback@intcx.com

gasindex@list.intcx.com

(b) Enron, F1 ≥ 0.6, MAE ≤ 2 hours.
Unlabeled nodes are also @enron.com ad-
dresses.

Figure 4.11: The structure of highly predictable edges.

only speculate that known cultural or economic differences between the regions are responsible for this

discrepancy.

Community Identification

A node in a dynamic network may have many frequent contacts with a subset of its neighbors, but it is often

more interesting to ask what type of relationship exists between nodes. For example, a person’s most frequent

e-mail contacts could be mailing lists and close associates. It might be difficult to tell these apart based

solely on the frequency of communication, but it may be possible to infer more based on the predictability

of interactions. The same applies to CDR datasets, where predictable phone calls suggest that the parties

involved have a specific reason for maintaining their schedule.

Among the most predictable interactions in the Enron dataset are the e-mails sent from the pete.davis@enron.com

e-mail address. Figure 4.12 shows the complete set of outlinks for this e-mail address, as well as the predic-

tive performance for each edge. Based on performance in the test segment, there seem to be three types of

edges associated with this address. The first is a set of addresses shown in the top-left quadrant for which

no model could be learned, either because the edges were too infrequent, or if HMM training repeatedly

resulted in singularity solutions.6 While this may not be considered a specific community, the second and

largest subset of addresses is shown in the bottom two quadrants, and is characterized by extremely high

F1-scores and low MAE values, implying a high degree of predictability. The final subset is shown in the top

right quadrant and is characterized by much higher MAE values.

Relationship Classification

Table 4.4 shows five of the highest-ranked edge pairs of the form (a, b) → (b, a) in the Enron dataset. In

this case, the trigger is an e-mail, and its response is literally the reply. In all the cases listed, the HMM

6This is a well-known issue with the EM/Baum-Welch algorithm in general, see [Fraley and Raftery, 2007,Rabiner, 1989]
for example.

24

Model Performance
a b µ1, σ1 F1 MAE

(min.) (min.)
ka..symes ev..metoyer 74.5 ± 36.6 0.631 293
mi..maggi mi..nelson 1.6 ± 3.37 0.686 49
ka..symes ke..thompson 72.3 ± 37.3 0.622 58.6
jo..griffith al..villarreal 2.18 ± 1.9 0.615 82.2
al..villarreal jo.griffith 6.77 ± 11.8 0.68 98.2

Table 4.4: HIGHEST RANKED (a, b) → (b, a) PAIRS IN THE ENRON DATASET. µ1 AND σ1 ARE THE
MEAN AND VARIANCE OF ONLY THE MOST DOMINANT HMM STATE.

consisted of one clearly dominant state. It is interesting to note different styles of working relationships – the

mean reply times vary between a few minutes to approximately an hour. Furthermore, finding symmetric

pairs among the highest ranked interactions seems to be quite rare. This could be a result of fundamentally

asymmetric relationships – for example, between an assistant and his superior – or a result of the fact that

the Enron dataset offers only a partial view of all e-mail traffic.

4.5 Summary

We have described a novel framework and algorithm for mining edges in dynamic networks that exhibit

temporally predictable interaction patterns, which we call coupled edges. Although there are a number of

practical applications to our technique, we see its value as an exploratory data analysis tool. Its power stems

from using a transparent prediction model (HMMs) with an easily interpretable structure that is grounded

in the interaction dynamics of real systems. Furthermore, even if HMMs are the wrong model for the vast

majority of edge dynamics, with apologies to the statistician George Box, there are certainly useful for the

edges that we do mine. The following is a summary of our contributions in this chapter:

1. We formally defined the mining problem and an evaluation framework that deals with dynamic network

data in continuous time.

2. We proposed an algorithm that predicts the future occurrence time of an edge, based on the prior

occurrence times of either itself or another edge. Our algorithm models time delays between occurrences

of edges, and is thus insensitive to timescales. It is also capable of representing and mining previously

studied types of predictable patterns, such as partial periodic patterns [Han et al., 1999, Lahiri and

Berger-Wolf, 2008], and temporal association rules [Oates et al., 1997].

3. We modeled temporal dependencies between edges that share a common vertex. This allows us to

partially incorporate the structure of the network in an intuitive way, and is rendered tractable because

of the skewed degree distribution observed in real networks [Newman, 2003]. Modeling all possible edge

dependencies in real networks is intractable.

4. We demonstrated the applicability of our method on two industrial phone call datasets, and a publicly

available e-mail dataset. Our experiments reveal that a large number of interactions are indeed pre-

dictable, sometimes to within a few hours, and that the structure of these interactions is quite complex.

25

22
4.

79
 {0

.9
9}

6.45 {0.97}

13.93 {0.98}

41
2.

08
 {0

.6
4}

106.46 {1.00}

98
.7

6
{0

.9
8}

13.83 {0.86}

22.88 {0.98}

13.67 {1.00}

534.99 {0
.98}

6.45 {0.97}17.26 {0.87}

21.23 {0.91}

16.94 {0.87}

6.45 {0.97}

15.68 {0.86}

17.26 {0.87}

19.40 {0.88}
13.83 {0.86}

6.19 {0.99}

pete.davis

kate.symes

dporter3

bert.meyers

kourtney.nelson

greg.wolfe

eric.linder

portland.shift

phillip.platter

leaf.harasin
steve.merriss

michael.mier

holden.salisbury

steven.merris

david.poston bill.iii
monika.causholli

darin.presto

bill.williams.iii

mark.guzman

bill.williamsryan.slinger
jbryson

pete.davis

craig.dean

chris.mallory

geir.solberg

albert.meyers

john.anderson

pchoi2

steve.merris

Figure 4.12: An egocentric e-mail network centered on pete.davis@enron.com, showing three possible
communities. Edge labels are of the form MAE(F1) with MAE in minutes; vertex sizes are proportional to
total number of e-mails sent.

26

This suggests that although digitally recorded social networks are massive, there exists within them

an embedded backbone of predictable connections that might have special meaning.

27

Bibliography

[Acar et al., 2009] Acar, E., Dunlavy, D., and Kolda, T. (2009). Link prediction on evolving data using

matrix and tensor factorizations. In IEEE Intl. Conf. on Data Mining Wkshps., pages 262–269. IEEE.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association

Rules in Large Databases. In Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 487–499, San

Francisco, CA. Morgan Kaufmann Publishers Inc.

[Brin et al., 1997] Brin, S., Motwani, R., Ullman, J., and Tsur, S. (1997). Dynamic itemset counting and

implication rules for market basket data. In Proc. of the 1997 ACM SIGMOD Intl. Conf. on Management

of data, pages 255–264. ACM Press New York, NY, USA.

[Bunke, 2003] Bunke, H. (2003). Graph-based tools for data mining and machine learning. Lecture Notes in

Computer Science, pages 7–19.

[Bunke et al., 2005] Bunke, H., Dickinson, P., Irniger, C., and Kraetzl, M. (2005). Analysis of time series of

graphs: Prediction of node presence by means of decision tree learning. In Proc. of the 4th Intl. Conf. on

Machine Learning and Data Mining in Pattern Recognition, volume 3587, pages 366–375. Springer.

[Chakrabarti and Faloutsos, 2006] Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, genera-

tors, and algorithms. ACM Comput. Surv., 38(1):2.

[Chaovalitwongse et al., 2007] Chaovalitwongse, W. A., Fan, Y.-J., and Sachdeo, R. C. (2007). Support

feature machine for classification of abnormal brain activity. In Proc. of the 13th ACM SIGKDD Intl.

Conf. on knowl. discovery and data mining, pages 113–122, New York, NY, USA. ACM.

[Chatfield, 2004] Chatfield, C. (2004). The analysis of time series: an introduction. CRC press.

[Domeniconi et al., 2002] Domeniconi, C., Perng, C.-S., Vilalta, R., and Ma, S. (2002). A classification

approach for prediction of target events in temporal sequences. In Proc. of the 6th European Conf. on

Principles of Data Mining and Knowl. Disc., pages 125–137, London, UK. Springer-Verlag.

[Faber et al., 2003] Faber, N., Bro, R., and Hopke, P. (2003). Recent developments in CANDE-

COMP/PARAFAC algorithms: a critical review. Chemometrics and Intelligent Laboratory Systems,

65(1):119–137.

[Fawcett, 2004] Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Machine

Learning, 31.

28

[Fawcett and Provost, 1999] Fawcett, T. and Provost, F. (1999). Activity monitoring: noticing interesting

changes in behavior. In Proc. of the 5th ACM SIGKDD Intl. Conf. on Knowledge discovery and data

mining, pages 53–62, New York, NY, USA. ACM.

[Fraley and Raftery, 2007] Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture

estimation and model-based clustering. J. Classif., 24(2):155–181.

[Frias-Martinez and Karamcheti, 2002] Frias-Martinez, E. and Karamcheti, V. (2002). A prediction model

for user access sequences. In Proc. WebKDD Wkshp.

[Frias-Martinez and Karamcheti, 2003] Frias-Martinez, E. and Karamcheti, V. (2003). Reduction of user

perceived latency for a dynamic and personalized site using web-mining techniques. In Proc. WebKDD

Wkshp.

[Galil, 1986] Galil, Z. (1986). Efficient algorithms for finding maximum matching in graphs. ACM Comput.

Surv., 18(1):23–38.

[Geng and Hamilton, 2006] Geng, L. and Hamilton, H. (2006). Interestingness measures for data mining: A

survey. ACM Computing Surveys, 38(3):9.

[Getoor et al., 2003] Getoor, L., Friedman, N., Koller, D., and Taskar, B. (2003). Learning probabilistic

models of link structure. Journal of Machine Learning Research, 3:679–707.

[Getoor and Taskar, 2007] Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational Learning.

MIT Press.

[Han et al., 1999] Han, J., Yin, Y., and Dong, G. (1999). Efficient mining of partial periodic patterns in

time series database. In Proc. of the 15th Intl. Conf. on Data Engineering, pages 106–115, Los Alamitos,

CA. IEEE Computer Society.

[Harms and Deogun, 2004] Harms, S. K. and Deogun, J. S. (2004). Sequential association rule mining with

time lags. Journal of Intelligent Information Systems, 22(1):7–22.

[Huang and Lin, 2009] Huang, Z. and Lin, D. K. J. (2009). The time-series link prediction problem with

applications in communication surveillance. INFORMS Journal on Computing, 21(2):286–303.

[Jensen and Neville, 2003] Jensen, D. and Neville, J. (2003). Data Mining in Social Networks. In Dynamic

Social Network Modeling and Analysis: Wkshp. Summary and Papers. National Academy Press.

[Kannadiga et al., 2007] Kannadiga, P., Zulkernine, M., and Haque, A. (2007). E-NIPS: An event-based

network intrusion prediction system. LECTURE NOTES IN COMPUTER SCIENCE, 4779:37.

[Kashima and Abe, 2006] Kashima, H. and Abe, N. (2006). A parameterized probabilistic model of network

evolution for supervised link prediction. In Proc. of the Sixth IEEE Intl. Conf. on Data Mining, pages

340–349, Los Alamitos, CA, USA. IEEE Computer Society.

[Kossinets and Watts, 2006] Kossinets, G. and Watts, D. J. (2006). Empirical analysis of an evolving social

network. Science, 311(5757):88–90.

29

[Lahiri and Berger-Wolf, 2007] Lahiri, M. and Berger-Wolf, T. Y. (2007). Structure prediction in temporal

networks using frequent subgraphs. In Proc. of IEEE Symposium on Computational Intelligence and Data

Mining, pages 35–42.

[Lahiri and Berger-Wolf, 2008] Lahiri, M. and Berger-Wolf, T. Y. (2008). Mining periodic behavior in dy-

namic social networks. In Proc. of the IEEE Intl. Conf. on Data Mining, pages 373–382.

[Laxman et al., 2005] Laxman, S., Sastry, P., and Unnikrishnan, K. (2005). Discovering frequent episodes

and learning hidden markov models: A formal connection. IEEE Transactions on Knowledge and Data

Engineering, 17(11):1505–1517.

[Laxman et al., 2008] Laxman, S., Tankasali, V., and White, R. W. (2008). Stream prediction using a

generative model based on frequent episodes in event sequences. In KDD ’08: Proceeding of the 14th

ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages 453–461, New York, NY,

USA. ACM.

[Lehot, 1974] Lehot, P. G. H. (1974). An optimal algorithm to detect a line graph and output its root graph.

Journal of the ACM, 21(4):569–575.

[Lesh et al., 1999] Lesh, N., Zaki, M. J., and Ogihara, M. (1999). Mining features for sequence classification.

In KDD ’99: Proc. of the fifth ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages

342–346, New York, NY, USA. ACM.

[Leskovec and Horvitz, 2008] Leskovec, J. and Horvitz, E. (2008). Planetary-scale views on a large instant-

messaging network. In Proceeding of the 17th Intl. Conf. on World Wide Web, pages 915–924, New York,

NY, USA. ACM.

[Liang et al., 2006] Liang, Y., Zhang, Y., Sivasubramaniam, A., Jette, M., and Sahoo, R. (2006). Bluegene/l

failure analysis and prediction models. Intl. Conf. on Dependable Systems and Networks, 0:425–434.

[Liben-Nowell and Kleinberg, 2003] Liben-Nowell, D. and Kleinberg, J. M. (2003). The link prediction prob-

lem for social networks. In Proc. of the twelfth Intl. Conf. on Information and knowledge management,

pages 556–559, New York, NY, USA. ACM.

[Liu et al., 1998] Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classification and association rule mining.

In Proc. of the 4rd Intl. Conf. Knowledge Discovery and Data Mining (KDD-98), pages 80–86. AAAI Press.

[Malmgren et al., 2009] Malmgren, R. D., Hofman, J. M., Amaral, L. A., and Watts, D. J. (2009). Charac-

terizing individual communication patterns. In Proc. of the 15th ACM SIGKDD Intl. Conf. on Knowl.

disc. and data mining, pages 607–616.

[Mannila et al., 1997a] Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997a). Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289.

[Mannila et al., 1997b] Mannila, H., Toivonen, H., and Verkamo, A. I. (1997b). Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289.

30

[Murata and Moriyasu, 2007] Murata, T. and Moriyasu, S. (2007). Link prediction of social networks based

on weighted proximity measures. In Proc. of the IEEE/WIC/ACM Intl. Conf. on Web Intelligence, pages

85–88, Washington, DC, USA. IEEE Computer Society.

[Nanavati et al., 2006] Nanavati, A. A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukher-

jea, S., and Joshi, A. (2006). On the structural properties of massive telecom call graphs: findings and

implications. In Proc. of the 15th ACM Intl. Conf. on Information and knowledge management, pages

435–444, New York, NY, USA. ACM.

[Newman, 2003] Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,

45(2):167–256.

[Oates and Cohen, 1996] Oates, T. and Cohen, P. R. (1996). Searching for structure in multiple streams of

data. In In Proc. of the Thirteenth Intl. Conf. on Machine Learning, pages 346–354. Morgan Kaufmann.

[Oates et al., 1997] Oates, T., Schmill, M., Jensen, D., and Cohen, P. (1997). A family of algorithms for

finding temporal structure in data. In 6th Intl. Wkshp. on A.I. and Statistics.

[O’Madadhain et al., 2005] O’Madadhain, J., Hutchins, J., and Smyth, P. (2005). Prediction and ranking

algorithms for event-based network data. ACM SIGKDD Explorations Newsletter, 7(2):23–30.

[Pei et al., 2004] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.-

C. (2004). Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Transactions

on Knowledge and Data Engineering, 16(11):1424–1440.

[Phithakkitnukoon and Dantu, 2007] Phithakkitnukoon, S. and Dantu, R. (2007). Predicting calls–new ser-

vice for an intelligent phone. In Real-Time Mobile Multimedia Services, volume 4787 of LNCS, pages

26–37. Springer.

[Pincombe, 2005] Pincombe, B. (2005). Anomaly detection in time series of graphs using ARMA processes.

ASOR Bulletin, 24(4):2–10.

[Popescul and Ungar, 2003] Popescul, A. and Ungar, L. H. (2003). Statistical relational learning for link

prediction. In IJCAI03 Wkshp. on Learning Statistical Models from Relational Data.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in

speech recognition. Proc. of the IEEE, 77:257–286.

[Raftery, 1999] Raftery, A. (1999). Bayes factors and BIC. Sociological Methods & Research, 27(3):411–417.

[Salfner and Malek, 2007] Salfner, F. and Malek, M. (2007). Using hidden semi-markov models for effective

online failure prediction. pages 161–174, Los Alamitos, CA, USA. IEEE Computer Society.

[Tung et al., 1999] Tung, A. K., Lu, H., Han, J., and Feng, L. (1999). Breaking the barrier of transactions:

mining inter-transaction association rules. In Proc. of the 5th ACM SIGKDD Intl. Conf. on Knowl. disc.

and data mining, pages 297–301, New York, NY, USA. ACM.

31

[Vaz de Melo et al., 2010] Vaz de Melo, P., Akoglu, L., Faloutsos, C., and Loureiro, A. (2010). Surprising

patterns for the call duration distribution of mobile phone users. Machine Learning and Knowledge

Discovery in Databases, pages 354–369.

[Vilalta and Ma, 2002] Vilalta, R. and Ma, S. (2002). Predicting rare events in temporal domains. 2nd IEEE

Intl. Conf. on Data Mining, page 474.

[Wang et al., 2007] Wang, C., Satuluri, V., and Parthasarathy, S. (2007). Local probabilistic models for link

prediction. In Proc. of the Seventh IEEE Intl. Conf. on Data Mining, pages 322–331.

[Wasserman and Faust, 1994] Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and

Applications. Cambridge University Press.

[Wei and Chiu, 2002] Wei, C. and Chiu, I. (2002). Turning telecommunications call details to churn predic-

tion: a data mining approach. Expert systems with applications, 23(2):103–112.

[West, 2001] West, D. B. (2001). Introduction to graph theory. Prentice Hall, NJ.

32

