
D
R
A
F
T

Contents

3 Measuring and Mining Periodicity 2

3.1 Preliminaries . 4

3.2 Problem Definition . 6

3.2.1 Basic Formulation . 7

3.2.2 Parsimonious Formulation . 8

3.2.3 Practical Considerations . 9

3.3 Related Work . 10

3.4 Complexity Analysis of the Mining Problem . 11

3.5 The Algorithm . 14

3.5.1 Parameters . 15

3.5.2 Data Structures . 15

3.5.3 Tree Update Algorithm . 16

3.5.4 Correctness . 17

3.5.5 Time and Space Complexity . 21

3.5.6 Extensions to the Basic Algorithm . 21

3.6 Experimental Evaluation . 23

3.6.1 Datasets . 23

3.6.2 Results on Natural Data . 25

3.6.3 Comparison to SMCA . 29

3.7 Summary . 32

1

Chapter 3

Measuring and Mining Periodicity

In this chapter, we deal with the detection of a type of predictable behavior in such systems, namely pe-

riodically recurring interaction patterns in networks that change over time. Our goal is to detect periodic

behavior even if it persists only for a short period of time, since such locally periodic behavior often holds

a special meaning in real-world systems. As the simplest form of predictable behavior, periodic interaction

patterns can indicate interesting relationships between the individuals involved in the interactions. Further-

more, with the right formal definition of what constitutes periodic behavior, the aggregate periodicities of

an entire set of mined interaction patterns can yield insight about the global dynamics of the system being

observed. We define the periodic pattern mining problem for dynamic networks as a step towards this goal,

and describe an efficient algorithm to mine all such patterns from a stream of dynamic interaction data.

Part of the motivation for our focus on periodicities is the fact that streams of dense, time-varying

interaction data are being collected in very diverse settings, and the first step in numeric signal processing is

generally to take the Fourier transform of a signal to decompose it into a function of sinusoidal components,

and subsequently to be able to analyze the spectrum of periodicities the signal contains. In this chapter, we

aim to develop a similar tool for dynamic networks. As a motivating (but not unusual) example, ecologists

often tag wild animals with GPS or proximity sensors to study behavioral and social association patterns of

the animals [Fischhoff et al., 2007,Sundaresan et al., 2007, Juang et al., 2002]. This results in a continuous

stream of interaction data, where periodically recurring patterns might correspond to seasonal or other

recurrent association patterns. The same methodology has been used in human behavior experiments,

with location-aware cellphones naturally replacing tracking collars [Eagle and Pentland, 2006], or human

interactions being approximated by mobile phone or e-mail logs [Nanavati et al., 2006,Diesner and Carley,

2005, Chapanond et al., 2005] . Analyzing the local periodicities in such datasets presents opportunities

for social science research, as well as commercial applications like recommender systems, traffic analysis

and user modeling. The method presented in this chapter helps to answer two questions: what are the

typical periodicities present in a dataset, and what are the specific interaction patterns that occur at these

periodicities?

Our definition of the periodic pattern mining problem is specifically tailored for the analysis of dynamic

networks, and is generic enough to handle all the situations just mentioned. It differs from earlier work in

periodic pattern mining primarily in the use of two related concepts: (a) the concept of closed subgraphs,

2

and (b) the principle of parsimony. Closed subgraph mining has been extensively explored in the context of

a related problem of frequent pattern mining [Han et al., 2007]. It draws from the areas of formal concept

analysis and lattice theory to reduce redundancy in the definition of a frequent pattern, and thus reduces the

potentially exponential (in the size of the input) number of output patterns that must be computed [Pasquier

et al., 1999, Carpineto and Romano, 2004]. The principle of parsimony is commonly known as Occam’s

Razor, and is a widely practiced guideline that suggests favoring the simplest hypothesis that is consistent

with a phenomenon. Combining these two concepts allows us to define periodic patterns in a way that

avoids any redundant information, is more amenable to analysis, and allows the development of a provably

efficient online mining algorithm. Furthermore, all the information contained in earlier definitions of periodic

pattern mining is contained in ours in a more compact form, i.e., the output of earlier algorithms can be

deterministically generated from the output of our algorithm, but such a process would only add redundant

information to the output.

We describe the periodic subgraph mining problem for dynamic networks, or more generally, for an

arbitrary time series of structured interaction data. We draw on the concept of closed subgraphs from the

related area of frequent pattern mining in order to mine coherent interaction patterns without redundancy.

The theoretical framework of closed subgraphs allows us to derive an exact upper bound on the maximum

number of patterns possible in any dynamic network, which subsequently allows us to develop a conceptually

simple but powerful mining algorithm with polynomial worst-case time and space guarantees. The last

point also underscores the fact that periodic subgraph mining in dynamic networks has inherently lower

computational complexity than frequent pattern mining, which is also proved in this chapter. Another

important aspect of our algorithm is the fact that it only requires a single scan of the data and heuristically

accommodates patterns that are not perfectly periodic, which is what might be expected in real-world

domains.

We demonstrate the usefulness of mining periodic patterns on four diverse real-world datasets. Mirroring

the increasing diversity of network analysis domains, we examine datasets of wild zebra association patterns,

geographical movement patterns of university students, and the sightings of celebrities associated with the

entertainment industry, among others. In addition to demonstrating the practical efficiency of our algorithm,

we find that analyzing the collective periodicities of all mined patterns is indeed informative about the

dynamics of the system being studied, yielding highly intuitive results about the specific systems we analyzed.

We also found a number of interesting patterns which are intriguing because of a combination of their

structure and periodicity. Some of these patterns occur relatively infrequently and might not have stood out

had only their frequency of occurrence been considered, as is the case in frequent pattern mining. The fact

that we can recover these structural patterns is an advantage over methods that deal with dynamic networks

as tensors [Sun et al., 2006].1

This chapter is organized as follows. In the next section, we present some preliminary definitions related

to dynamic networks, as well as some graph theoretic properties that are key to the inherent complexity

of the problem. In Section 3.2, we formally define the mining problem, which incorporates the concepts of

closed subgraphs and parsimony. This is followed by a discussion of related literature in Section 3.3. In

Section 3.4, we analyze the inherent complexity of the problem and derive an exact upper bound on the

1An alternative approach to detecting periodicities is to use the PARAFAC/CANDECOMP decomposition on a dynamic
network and then use a conventional Fourier transform along the time dimension. This is an interesting topic for future research.

3

1 56

2 34

1 5

8

6

2

7

3

9
13

1 5

12

6

2

10

3

11

14

9
12

10

11

14

1 56

3

Figure 3.1: An example of a dynamic network with five timesteps.

maximum number of possible periodic subgraphs in any dynamic network. We show that the mining problem

is in the computational complexity class P (polynomial), in contrast to the closely related frequent pattern

mining problem [Boros et al., 2002, Yang, 2004]. The complexity analysis of the problem is then used in

Section 3.5 to build an efficient, online mining algorithm. The results of our experimental evaluation are

presented in Section 3.6, followed by some concluding remarks and possible future research directions.

3.1 Preliminaries

Dynamic networks are a representation for a time series of interactions between a set of unique entities. Let

V ∈ N represent this set of entities. Interactions between entities can be either directed or undirected, and

are assumed to have been recorded over a period of T discrete timesteps. The question of how much real time

should constitute a timestep is beyond the scope of this thesis; we use natural quantizations specific to each

of our datasets, such as one day per timestep. The only requirement is that a timestep should correspond to

a meaningful amount of real time, as the periodicities of mined subgraphs will be in multiples of the chosen

timestep.

Definition 3.1.1. (Dynamic network) A dynamic network G = 〈G1, ..., GT 〉 is a time-series of graphs,

where Gt = (Vt, Et) is a simple graph of interactions Et observed at timestep t among the subset of entities

Vt ⊆ V at timestep t.

Figure 3.1 is an example of a dynamic network with five timesteps. Definition 3.1.1 implies a convenient

graph theoretic property that reduces the high computational complexity of many algorithmic tasks on

graphs: since a vertex represents a unique entity, each vertex v in a particular timestep’s graph Gt has a

unique vertex label. This constitutes a class of graphs that can be represented as sets of integers, resulting

in a reduction to quadratic computational complexity (in the number of vertices) for certain hard graph

problems, such as maximal common subgraph and subgraph isomorphism [Dickinson et al., 2003,Lahiri and

Berger-Wolf, 2007,Lahiri and Berger-Wolf, 2008,Lahiri and Berger-Wolf, 2010].

Property 3.1.1. (Set Representation) For a graph G = (V,E) with unique vertex labels, the set

representation R for G is formed by mapping each vertex and edge to a unique element in R, where R ⊂ N.

Since each vertex is uniquely identifiable by its label, it follows that each edge is also uniquely identifiable

by its endpoints. This allows each vertex and edge to be coded as a unique integer, even across different

graphs over the same vertex set. It can trivially be shown that two graphs (or timesteps) will result in the

same set R if and only if they have identical vertex and edge sets. Although connectivity information is lost

in the set representation, it is a useful transformation for the following algorithmic tasks, which are key to

the development of our algorithm.

4

G =2
1

3

4 5

Vtx. 1 : 1

Vtx. 2 : 2

Vtx. 3 : 3

Vtx. 4 : 4

Vtx. 5 : 5

<1,2> : 6

<1,3> : 7

<1,4> : 8

<1,5> : 9

1

2 3

4

G =1

1

3

4

MCS =

R = {1, 2, 3, 4, 6, 7, 8}

R = {1, 3, 4, 5, 8, 9}

MCS = {1, 3, 4, 8}

2

1

Figure 3.2: The correspondence between graph and set representations for graphs with unique vertex labels.
The example demonstrates the computation of the maximal common subgraph of two graphs using set
representation.

Property 3.1.2. (Subgraph Testing) For two graphs G1 and G2 with unique vertex labels, testing

whether G1 is a subgraph of G2 or vice versa is equivalent to checking whether the corresponding set repre-

sentations R1 and R2 are subsets of each other. For this reason, we use the subset operator ⊆ to denote a

subgraph relationship between G1 and G2.

Property 3.1.3. (Maximal Common Subgraph) For a set f graphs with vertex unique labels, finding

the maximal common subgraph (MCS) is equivalent to the maximal intersection of their set representations.

For a set of graphs G1, ..., GT , a vertex or an edge is part of the MCS if it is part of every Gt. As a result, the

maximal common subgraph always exists, is unique and well-defined, but could possibly be the empty graph

with no vertices or edges. We use the intersection operator ∩ to denote the maximal common subgraph of

two or more graphs.

Property 3.1.4. (Hashing) A hashing function exists for graphs since the set representation R has a

global ordering by virtue of R ⊂ N.

Figure 3.2 demonstrates the use of Property 3.1.1 to calculate the maximal common subgraph of two

graphs using set representation. A further implication of the set representation is that a dynamic network can

be represented as a transaction database (also known as ‘market-basket’ data [Agrawal and Srikant, 1994])

for certain data mining tasks like frequent subgraph mining2 [Inokuchi et al., 2000,Kuramochi and Karypis,

2001]. Although mining for periodic patterns in time-ordered transaction databases has been studied in

different contexts [Özden et al., 1998,Han et al., 2007,Han et al., 1999,Yang et al., 2001,Huang and Chang,

2005], one of the main advantages of our framework is the ability to handle structured data like dynamic

networks (with connectivity information) while also being applicable to unstructured data like transaction

databases.

We now introduce some terminology from the frequent pattern mining problem to be used in our problem

definition and analysis.

Definition 3.1.2. (Support) Given a dynamic network G of T timesteps and an arbitrary graph F =

(V,E), the support set S(F) of F in G is the set of all timesteps t in G where F is a subgraph of Gt, which

2Since connectivity information is lost in the set representation, frequent connected subgraphs and subgraphs with other
specific graph-theoretic properties cannot be extracted from the set representation.

5

we denote F ⊆ Gt. The support of F is the cardinality of its support set, |S(F)|:

S(F) = {ti, ..., tj} such that ∀t (t ∈ S(F)↔ F ⊆ Gt).

Definition 3.1.3. (Frequent Subgraph) Given a dynamic network G of T timesteps, an arbitrary graph

F = (V,E) is frequent if its support exceeds a user-defined minimum support threshold σ ≤ T .

Definition 3.1.3 is the basis of the well known frequent pattern mining problem, which deals with the

extraction of all subgraphs F where |S(F)| ≥ σ. An implication of the näıve definition of a frequent

subgraph is the downward closure property, which states that every subgraph of a frequent subgraph F is

itself frequent. This serves as the underpinning of Agrawal and Srikant’s classic Apriori algorithm, which

searches for large frequent patterns by iteratively concatenating the smaller, frequent sub-patterns implied

by the downward closure, relying on the sparsity of larger frequent patterns [Agrawal and Srikant, 1994]. The

downward closure is what makes a principled, incremental search through pattern space tractable, but is also

a double-edged sword. Although many improvements have been made to the classic Apriori algorithm [Han

et al., 2007,Cheng et al., 2008], any mining algorithm required to explicitly enumerate every frequent pattern

in a dataset would, in doing so, have to enumerate the exponential number of subgraphs of every frequent

subgraph which is a redundant and resource expensive process. The cornerstone of a solution to this problem

is the use of closed subgraphs [Pasquier et al., 1999,Carpineto and Romano, 2004,Han et al., 2007].

Definition 3.1.4. (Closed subgraph) Given a dynamic network G of T timesteps and an arbitrary

graph F = (V,E), F is closed if it is maximal for its support set: no vertex or edge can be added to F while

maintaining its support.

Mining frequent closed subgraphs is an elegant solution to the redundancy of the general frequent pattern

mining problem. It captures all the information of the more general formulation, but can result in output

that is exponentially smaller in size without any loss of information. We therefore adopt it as an integral

part of our problem definition, which is described in the next section.

3.2 Problem Definition

We formally define the periodic subgraph mining for dynamic networks as a special case of frequent closed

pattern mining with important additional computational properties. These properties allow the development

of efficient mining algorithms and justify an independent treatment of the problem, rather than an approach

that would, for example, push constraints into a conventional frequent pattern mining algorithm [Pei and

Han, 2000, Garofalakis et al., 1999, Pei et al., 2002, Zhu et al., 2007]. The relation to frequent pattern

mining also highlights the fact that we are searching for locally periodic patterns, i.e., those that exhibit

periodic behavior in a contiguous subsequence of the entire data stream. These are also known as partially

periodic patterns [Han et al., 1999,Ma and Hellerstein, 2001, Huang and Chang, 2005]. We begin with a

basic formulation of the problem and then develop it into a parsimonious formulation. We end this section

by describing mechanisms to rank periodic patterns and handle imperfect periodicity in real-world datasets.

6

Figure 3.3: An example of a dynamic network with 2 PSEs at σ = 3.

3.2.1 Basic Formulation

Definition 3.2.1. (Periodic support set) Given a dynamic network G and an arbitrary subgraph

F = (V,E), a periodic support set of F in G, denoted SP = (i, p, s), is a maximal, ordered set of s timesteps

starting at ti with every two consecutive timesteps being p steps apart.

SP = (i, p, s) = 〈ti, ti+p, ..., ti+p(s−1)〉

subject to the following constraints:

1. Existence in G: F must exist at all timesteps in SP , i.e., ∀t (t ∈ SP → F ⊆ Gt). Note that the

implication in the constraint is only in the forward direction, unlike Definition 3.1.3.

2. Minimum size: A periodic support set has to have at least two elements, i.e., |SP | = s ≥ 2.

3. Temporal maximality: The support set cannot be extended in time to contain F and still be periodic,

i.e., F 6⊆ Gt(i−p)
and F 6⊆ Gt(i+p·s)

.

The phase offset of a periodic support set is defined as m = (ti−1) mod p, since indices start from 1. Thus,

0 ≤ m < p.

A key difference in the definitions of a support set for frequent pattern mining and periodic pattern

mining is that a single graph F can have multiple periodic support sets to allow for multiple, disjoint, or

overlapping periodic behavior. Thus, we require the extraction of all periodic subgraph embeddings, rather

than just the periodic subgraphs themselves. This is encompassed in the following definition.

Definition 3.2.2. (Periodic subgraph embedding) Given a dynamic network G, a periodic subgraph

embedding (PSE) is a pair 〈F, SP 〉, where F is an arbitrary graph that is closed over a periodic support set

SP with |SP | ≥ σ. The following list summarizes the properties of a PSE:

1. Minimum support: |SP | ≥ σ ≥ 2, from Definition 3.2.1.

2. Structural maximality: F is maximal over SP , i.e. F is the maximal common subgraph of SP , from

Definition 3.1.4.

3. Temporal maximality: SP is temporally maximal for F , from Definition 3.2.1.

Figure 3.3 shows an example of a dynamic network with two PSEs at σ = 3. The first is the subgraph

{(1, 4), (1, 5)} with a period of 2 and support set of 〈1, 3, 5〉, and the second is the singleton vertex {1} with

a period of 1 and a support set of 〈3, 4, 5〉. Note that the subgraph {(1, 2), (1, 3)} is frequent but not periodic

at σ = 3.

7

3.2.2 Parsimonious Formulation

We now address the issue of redundant information in the output. If we think of a PSE from Definition 3.2.2

as communicating a set of timesteps at which a particular subgraph exhibits periodic behavior, a PSE which

communicates information that is already contained in another PSE is redundant. For example, a subgraph

F of period 2 with adequate support will also be output as a subgraph of period 4, and so on. This will

continue for a fixed number of multiples of the base period, depending on the support of the pattern and the

minimum support, in spite of the fact that the higher multiples communicate no new information about the

subgraph in question. Furthermore, when analyzing periodic behavior in terms of the periodicities of mined

patterns, there is no justifiable reason prima facie (or in keeping with Occam’s Razor) to count multiples of

a base pattern’s period, unless those multiples extend beyond the support of the base pattern.

Although the use of closed subgraphs reduces much of the redundancy associated with the output of an

Apriori style algorithm, the basic definition of a PSE still retains some of it. To eliminate all such redundancy,

we pose our problem as that of mining aminimal set of patterns to cover all periodic occurrences of all periodic

subgraphs. Keeping in line with the principle of parsimony, this eliminates patterns with periods that are

multiples of a base period, unless they convey some new information about a periodic occurrence. In order

to describe this concept formally, we first define the notion of subsumption of PSEs.

Definition 3.2.3. (Subsumption) For two periodic subgraphs F1 and F2 with respective periodic support

sets SP,1 = (i1, p1, s1) and SP,2 = (i2, p2, s2), 〈F1, SP,1〉 completely contains or subsumes 〈F2, SP,2〉 if all of

the following conditions hold:

1. F2 ⊆ F1

2. ti2 ≥ ti1

3. ti2+p2·(s2−1) ≤ ti1+p1·(s1−1)

4. p2 = k · p1 for some integer k > 0

5. ti,2 = ti,1 + l · p1 for some integer l ≥ 0

We prove that all conditions listed above are necessary for subsumption. Condition 1 is trivially required

to ensure that no information is lost. Let f1(l) = ti,1 + l · p1 and f2(l) = ti,2 + l · p2 be the lth occurrence

of F1 and F2 respectively, for some integer l. For subsumption, we require that the support set SP,2 is

completely contained within the support set SP,1. Conditions 2 and 3 require that the support set of of F2 is

contained within the bounds of the support set of F1, although they could be of different phase offsets and

not overlapping at all, or partially overlapping but of different periods. Condition 4 requires that the period

of F ′ is an integer multiple of F , and condition 5 requires that F1 and F2 have compatible phase offsets,

which ensures that they overlap. This is handled by requiring that the first occurrence of F2 overlap with

any occurrence of F1. Thus, ti,2 = f1(l), which yields the final condition ti,2 = ti,1 + l · p1.

Definition 3.2.4. (Parsimonious PSE) A PSE that is not subsumed by any another PSE is a parsimo-

nious periodic subgraph embedding (PPSE).

As an example to motivate the mining of PPSEs, consider a system in which all the nodes only interact

periodically with either period 2 or 4, starting at arbitrary times and continuing for an arbitrary number

8

of repetitions. Suppose that we want to discover these unknown periodicities by observing the system for a

period of time. With non-parsimonious PSEs, duplicates of each true periodic pattern would be reported for

a fixed number of multiples of either 2 or 4, depending the specific pattern. If we were to plot a histogram

of the periodicities of all mined patterns, we would see various artifacts from the higher order periodicities,

which could obscure the true periodicities. On the other hand, with parsimonious PSEs and enough data,

the true periodicities of 2 and 4 would, with high probability, be the most prominent peaks.

Definition 3.2.5 (Periodic Subgraph Mining Problem). Given a dynamic network G and a minimum support

threshold σ ≥ 2, the Periodic Subgraph Mining problem is to list all parsimonious periodic subgraphs

embeddings in G that satisfy the minimum support.

3.2.3 Practical Considerations

Handling noise by smoothing

Since real-world networks are unlikely to always contain perfectly periodic patterns, we use smoothing as

a mechanism for accommodating imperfect periodicity. Given a user-defined smoothing parameter S ≥ 1,

we transform the dynamic network by considering a sliding window over its timesteps. In other words, we

transform the dynamic network G in the following manner3, where Gi ∈ G:

G′ = 〈G1 ∪ ... ∪GS , G2 ∪ ... ∪GS+1, ...〉

In addition, the following two conditions handle the removal of artifacts introduced by the smoothing process.

1. The minimum period Pmin is set to S.

2. PSEs of the same subgraph that share the same period and differ in their starting positions by at most

S − 1 timesteps are merged. In other words, the PSE with the highest support is retained. This can

be done as a post-processing step or incorporated into the mining algorithm itself.

By introducing this smoothing mechanism, we allow a window of timesteps within which the order of events

does not matter. No smoothing is performed at S = 1.

Purity: a measure for ranking periodic subgraphs

A periodically recurring subgraph is not necessarily representative of an interaction pattern that occurs only

periodically, as shown in Figure 3.4. The purity measure expresses how likely it is that a periodic subgraph

embedding occurs only periodically over its support set.

Definition 3.2.6. (Purity) Given a periodic subgraph embedding 〈F, SP 〉 with period p, starting at

timestep ti and with support s = |〈ti, ..., tj〉|, the purity of F is the ratio of its periodic support to its total

support in the timestep range [ti, tj].

purity(F) =
s

|{t : F ⊆ Gt, ti ≤ t ≤ tj}|

3Blank timesteps are appended to the beginning and end of the dynamic network as necessary to handle boundary conditions.

9

Figure 3.4: A periodic subgraph embedding (bold) with non-periodic occurrences. The purity of this periodic
subgraph is 3/5, whereas its average purity is 1

2 (
3
5 + 3

7) ∼ 0.51.

It is sometimes advantageous to define the purity of a subgraph as the average purity of its edges. Doing

so is more representative of the temporal characteristics of the entire subgraph. We use the term ‘purity’ to

refer to average purity for the remainder of this chapter. Figure 3.4 shows an example of the purity measure.

Definition 3.2.7. (Average Purity) The average purity of a subgraph F = (V,E) is the average purity

of all of its edges.

avgPurity(F) =
1

|E|

∑

e∈E

purity(e)

3.3 Related Work

Searching for periodicity and periodic patterns have appeared in different contexts in data mining. In this

section, we review relevant literature concerning periodic pattern mining, as well as the closely related prob-

lem of frequent pattern mining. We omit certain earlier antecedents to this line of research, such as mining

cyclic association rules [Özden et al., 1998] and frequent sequential patterns [Agrawal and Srikant, 1995],

as they are not directly relevant. Also omitted for the same reason are periodic pattern mining approaches

that require or assume that the entire input is at least approximately periodic, including techniques that use

Fast Fourier Transforms [Elfeky et al., 2005a,Elfeky et al., 2005b].

Most algorithms for mining periodic patterns deal with unstructured data such as a sequence or multiple,

aligned sequences. In the most general formulation of the problem, the input consists of a sequence of

symbols sets S = 〈a1, ..., aT 〉, where each symbol set ai is drawn from a finite universal set L. A pattern

is a sequence P = 〈b1, ..., bp〉 of length p, where p is the period of the pattern and each bi ⊆ L ∪ {∗}. The

‘*’ character is a wild card that matches any symbol. Less general versions consider only a single sequence

as the input, so each ai ∈ L and bi ∈ L ∪ {∗}. The pattern mining problem is to extract all such patterns

from the input sequence, subject to constraints such as a minimum support. Algorithms for this task are

generally variants of the classic Apriori algorithm of Agrawal and Srikant [Agrawal and Srikant, 1994], in

which larger patterns are iteratively built from smaller ones. Note that the definition of a periodic pattern

in this line of research is essentially a sequence with wildcards, whereas our definition is closer to concepts

from frequent pattern mining.

Han et al. introduced one of the first algorithms to mine partial periodic patterns in multidimensional

sequences [Han et al., 1999]. They adopt an Apriori-inspired search through pattern space using a novel

prefix-based data structure called a max-subpattern tree. Ma and Hellerstein [Ma and Hellerstein, 2001]

propose a similar, Apriori-inspired approach consisting of two level-wise algorithms for mining periodic

patterns in the presence of both partial periodicity as well as imperfect periodicity. They also propose an

interesting statistical (as opposed to combinatorial) foundation for defining periodicity.

10

Yang et al. [Yang et al., 2001,Yang et al., 2002] proposed another level-wise mining algorithm for detecting

‘surprising’ periodic patterns, i.e. those judged to be interesting based on deviation from their expected

frequency. This is intended to overcome limitations of using the support of a pattern as the sole measure

of its worth. They devise two variants of information gain as measures of interest: bounded information

gain [Yang et al., 2001] and generalized information gain [Yang et al., 2002], the second of which obeys the

triangle inequality. However, a number of independence assumptions are made, such as the probability of

occurrence of an event being the same at any point in time, and these might not hold in dynamic networks.

Yang et al. [Yang et al., 2003] propose a level-wise mining algorithm that allows imperfect (or ‘asyn-

chronous’) periodic patterns to be discovered. They do this by introducing two user-defined parameters into

the mining process to specify the minimum number of repetitions of a pattern and the maximum amount of

disruption allowed. Huang and Chang [Huang and Chang, 2005] build on this in their description of SMCA,

a suite of four algorithms for mining periodic patterns [Huang and Chang, 2005]. The fundamental idea is

still to conduct a level-wise search through pattern space, but augmented with more efficient data structures

and algorithms than earlier approaches. Each algorithm enumerates more complex patterns from the output

of an earlier stage.

Finally, our work is inspired by frequent pattern mining, which is concerned with the discovery of patterns

that occur more frequently than a user-defined threshold. A relatively young offshoot of this line of research is

frequent subgraph mining [Inokuchi et al., 2000,Kuramochi and Karypis, 2001], which was originally devised

to search for common structures in databases of chemical compounds represented as graphs. A detailed

overview of this field is beyond the scope of this thesis, but may be found in [Han et al., 2007] and [Cheng

et al., 2008]. There are, however, a number of recent complexity results for frequent pattern mining that are

relevant. Specifically, given a set of maximal frequent itemsets, Boros et al. [Boros et al., 2002] show that

it is NP-complete to decide if there is a further maximal frequent itemset. Yang [Yang, 2004] shows that

different variants of maximal frequent pattern mining, including itemsets and subgraphs with unique vertex

labels, are either #P-hard or #P-complete in terms of counting the number of satisfying solutions. Thus,

many variants of frequent pattern mining are computationally intractable in the worst case.

3.4 Complexity Analysis of the Mining Problem

We now analyze the computational complexity of the periodic subgraph mining problem as defined in Sec-

tion 3.2. In order to do this, we derive an exact upper bound on the number of PSEs that can exist in any

dynamic network of T timesteps. We prove that this upper bound is a polynomial function of the number

of timesteps and the minimum support value. We show that the upper bound is sharp by constructing a

‘worst-case’ dynamic network.4 The proof leads to the conclusion that mining all closed PSEs can be done in

polynomial time in the size of the input, proving that the mining (enumeration) problem is in the complexity

class P, when the graphs have unique vertex labels. This is in contrast to the more general frequent subgraph

mining problem, which is NP-hard for enumeration and #P-complete for counting, even with unique vertex

labels [Yang, 2004, Boros et al., 2002]. We take advantage of the intrinsic polynomial complexity of the

problem to design an efficient single-pass mining algorithm in Section 3.5. We do not include smoothing in

4An alternate version of this proof in terms of maximal subgraphs, but with the same outcome, can be found in [Lahiri and
Berger-Wolf, 2008].

11

the following analysis, and purely algebraic manipulations are omitted for brevity.

Theorem 3.4.1. Periodic Subgraph Mining in dynamic networks is in P.

To prove Theorem 3.4.1, we first construct a class of worst-case dynamic networks and show that any

member of this class has the maximum possible number of PSEs. We utilize the concept of a projection of

a discrete time sequence to count the maximum number of PSEs in this class of dynamic networks [Elfeky

et al., 2005a].5

Definition 3.4.1. Given a dynamic network G, a projection πm,p of G is a subsequence of graphs

πm,p = 〈G1+m, G1+m+p, G1+m+2p, ...〉,

where p is the period of the projection and 0 ≤ m < p is the phase offset.

It should be clear from the definitions of periodicity and projection that any periodic support set at

minimum support σ is embedded in at least σ consecutive positions of some projection πm,p.

Proposition 3.4.1. Let F be the maximal common subgraph of any s ≥ σ consecutive positions of any

projection πm,p. If F is not empty, then it is a periodic subgraph and the s consecutive timesteps from πm,p

are part of a PSE for F .

Proof. A non-empty maximal common subgraph F of any s ≥ σ consecutive positions implies that F is

maximal over a support set of at least σ periodic timesteps, which in turn might or might not be temporally

maximal for F . However, in either case, the s timesteps are part of some valid periodic support set of size

at least σ. This is a sufficient condition to satisfy Definition 3.2.2, and thus F is a periodic subgraph.

Corollary 3.4.1. In the worst computational complexity case for mining periodic subgraph embeddings in a

dynamic network, the maximal common subgraph of every s ≥ σ consecutive positions of every projection is

not empty and contains a unique PSE.

Proof. Clearly, if every periodic subset of s ≥ σ timesteps of the dynamic network contains a unique maximal

common subgraph, then they all need to be enumerated by any mining algorithm and it is indeed the worst

case input for a periodic subgraph mining problem. We now show that it is attainable using an explicit

construction. We place a different edge in each s ≥ σ consecutive positions of every projection to ensure that

each edge is part of a unique periodic subgraph embedding. Let edge e be created in this way with support

set SP in some πm,p. Considering only SP , we know that it is temporally maximal for the edge e because

e does not exist in any other timesteps. Furthermore, the maximal common subgraph of SP is non-empty

because it contains at least the edge e. Thus, each edge is part of a unique PSE whose support set is SP .

Since a different edge was placed in every s ≥ σ consecutive positions of every projection, the number of

PSEs is equal to the number of edges created. No additional PSEs can be created since every permissible

support set, i.e. with support greater than σ, is already part of a unique PSE. Therefore, the described

structure is a worst case instance for its size.

5In principle, any combinatorial technique can be used to count the number of PSEs. Projections are convenient for
Definition 3.2.2 and some extensions to it.

12

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

Figure 3.5: An example of a worst case dynamic network for mining PSEs at σ = 3.

Figure 3.5 shows an example construction of such a worst-case dynamic network with 12 PSEs at σ = 3.

The next step is to explicitly calculate the upper bound on the number of PSEs in the worst-case network

instances. Following from Corollary 3.4.1, we only need to count the number of s ≥ σ consecutive positions

of every projection to derive this bound. In order to do this, we first state the bounds on several other

parameters.

Proposition 3.4.2. In a dynamic network with T timesteps, the maximum period of any periodic subgraph

with support at least σ is P = ⌊(T − 1)/(σ − 1)⌋.

Proposition 3.4.3. In a dynamic network with T timesteps, the length of any projection is |πm,p| =

⌈(T −m)/p⌉.

The proofs of the Propositions 3.4.2 and 3.4.3 are straightforward and similar to those in [Elfeky et al.,

2005a]. Given the above expressions, we now derive an exact bound by construction.

Theorem 3.4.2. In a dynamic network with T timesteps, there are at most O(T 2 ln T
σ
) closed PSEs at

minimum support σ.

Proof. From Corollary 3.4.1, the maximum number of PSEs possible in a dynamic network at minimum

support σ is equal to the number of s ≥ σ length windows over all possible projections of the network. For

a given projection πm,p and value of s, it is clear that the number of length-s windows over the projection is

|πm,p|−s+1, where |πm,p| is the length of the projection defined in Proposition 3.4.3. Thus, for a given value

of s, the number of length-s windows over all projections can be obtained by substituting the expressions

from Propositions 3.4.2 and 3.4.3:

⌊T−1
s−1 ⌋
∑

p=1

p−1
∑

m=0

(⌈

T −m

p

⌉

− s+ 1

)

We have replaced σ with s in the expression for the maximum period of a pattern from Proposition 3.4.2,

since we only want projections which contain at least one length-s window for any s. This constitutes the

outer summation; the inner summation is over all possible phase offset values m for a given period p. Finally,

the term inside the summation is the number of length-s windows in any projection, where |πm,p| has been

substituted from Proposition 3.4.3. We now sum this expression over all possible values of s, which run from

13

σ to T , and relax the floor and ceiling expressions for an asymptotic closed form approximation.

T
∑

s=σ

⌊T−1
s−1 ⌋
∑

p=1

p−1
∑

m=0

(⌈

T −m

p

⌉

− s+ 1

)

(3.1)

∼
T
∑

s=σ

T−1
s−1
∑

p=1

p−1
∑

m=0

(

T −m+ p

p
− s+ 1

)

(3.2)

Expression 3.2 algebraically simplifies to an expression that is O(T 2 ·H(T−1
σ−1)), where H(n) =

∑n

k=1
1
k

is the nth harmonic number, asymptotically approximated by lnn. Thus, the number of PSEs at minimum

support σ is bounded asymptotically by O(T 2 ln T
σ
) (and exactly by Equation 3.1).

Proof of Theorem 1. To finally prove Theorem 3.4.1, consider an algorithm that outputs the maximal com-

mon subgraph of every σ length window of every projection. Since the maximal common subgraph of a

set of graphs with unique vertex labels can be found in time O(V + E) [Dickinson et al., 2003], in the

worst case, this results in O(T 2 ln T
σ
) periodic ‘fragments’ computed in Θ((V +E)T 2 ln T

σ
) time. Every pair

of periodic fragments is then compared and merged if they represent overlapping embeddings of the same

periodic subgraph, in time O((V +E)(T 2 ln T
σ
)2), resulting in all PSEs. Another run over pairs of PSEs can

eliminate all non parsimonious PSEs, resulting in an overall time complexity of O((V +E)T 4(ln T
σ
)2). Thus,

the mining problem is in P, and the exact bound on the number of closed PSEs is given in summation form

in Theorem 3.4.2.

3.5 The Algorithm

We now present PSEMiner6, our algorithm for mining all parsimonious periodic subgraph embeddings

(PPSEs) in a dynamic network. We start by describing the most basic form of the algorithm, which mines

closed (not just parsimonious) periodic subgraph embeddings, and proving its correctness and complexity.

We then describe some simple optimizations to the basic algorithm that allow it to output only PPSEs and

also improve its efficiency in practice.

PSEMiner is based on the following idea: as each timestep of the dynamic network is read, we maintain

a list of all periodic subgraph embeddings seen up to timestep t. This list is maintained in a simple data

structure called a pattern tree, which also tracks subgraphs that might become periodic at some point in the

future. Once PSEs cease to be periodic, they are flushed from the tree and written to the output stream if

they satisfy certain conditions like the minimum support. As each timestep Gt is read from the data stream,

the pattern tree is updated with the new information, which could involve modifying, adding and deleting

tree nodes. The complexity analysis in Section 3.4 allows us to prove worst-case computational time and

space bounds that are polynomial in the size of the input. We describe the algorithm, its parameters, data

structures and a proof of correctness in the following five sections. In Section 3.5.6, we describe optimizations

that complete the description of the algorithm.

6Periodic Subgraph Embedding Miner

14

3.5.1 Parameters

Our algorithm is a single-pass, polynomial time and space algorithm for mining all closed periodic subgraph

embeddings in a dynamic network. It does not require any parameters, but optionally accepts the following:

1. Minimum support threshold σ ≥ 2 (default: 2).

2. Minimum period Pmin (default: 1).

3. Maximum period Pmax (default: unrestricted).

4. Smoothing timesteps S ≥ 1 (default: 1).

When the Pmax parameter is restricted, our algorithm functions as an online algorithm, retaining only

the parts of the dataset in memory that it requires to calculate periodicities. There is a natural bound on the

maximum period of mined patterns if the number of timesteps T is finite and known (see Proposition 3.4.2).

However, in many situations this information is not available or relevant, such as in streaming sensor data.

In such cases, an unrestricted maximum period value places a large computational burden on the algorithm,

and requires that the entire dataset be retained in memory. This is because at any timestep t, any previously

observed timestep t′ < t could contain the initial occurrence of a periodic subgraph whose second occurrence

is at timestep t. Testing for this situation requires all previously seen timesteps to be retained in memory,

either explicitly or in some compressed form. The optional Pmax parameter limits the maximum period of

mined patterns, and thus eliminates the need to retain previously seen timesteps beyond a certain history.

The default parameters mine a complete set of periodic subgraphs without any smoothing, although

in practice, only σ values of 3 or more are meaningful. The output of the algorithm is a set of closed

parsimonious periodic subgraphs embeddings that satisfy the minimum support. Each embedding is written

to the output stream as soon as the last possible occurrence of the subgraph has been encountered, or when

the input stream has been exhausted.

3.5.2 Data Structures

As the algorithm scans the input stream, it maintains three primary data structures to track PSEs: a pattern

tree, a subgraph hash map, and an optional timeline list to increase efficiency. An auxiliary data structure,

called a descriptor, is used as a compact representation of a periodic support set. We refer to nodes in the

pattern tree as treenodes to distinguish them from nodes (vertices) in the dynamic network or in a periodic

subgraph. Each treenode N is associated with a single periodic subgraph F and a set of descriptors that

represent PSEs of F . We use the notation ‘treenode N/F ’ to refer to a treenode N that represents subgraph

F .

Pattern Tree, Subgraph Hash Map and Timeline List

The tree structure represents a subgraph relationship between periodic subgraphs. The structure of the

pattern tree is subject to a single constraint: with the exception of the special root node, all descendants

of a treenode N/F are associated with proper subgraphs of F , but not all subgraphs of F are necessarily

its descendants in the tree. This property allows efficient traversal of the tree by the mining algorithm, and

15

also allows the tree to be built and manipulated quickly and represented using very little space.7 It also

allows efficient traversal by virtue of the fact that if F is not observed at a given timestep for treenode N/F ,

then neither are the subgraphs represented by N ’s descendants (except for the root node). Direct access to

treenodes is also required, which is achieved by using a hash map to associate periodic subgraphs with their

corresponding treenode. This can be done efficiently, as described in Property 3.1.4 of the set representation

of dynamic networks. The timeline list is an optional component that links treenodes to the future timesteps

at which they are expected to appear. Its use is discussed in Section 3.5.6.

Treenodes

Each treenode N/F contains a list of descriptors {D1, ..., Dn}, one for each observed PSE of F . In addition,

each treenode maintains a list of periods and phases of all live descriptors (see below), which is used by

the tree update algorithm. Querying, adding to, and removing descriptors from this list are the primary

operations on a treenode.

Descriptors

A descriptor D is the abbreviated representation of a periodic support set. It is associated with a treenode

N/F and defines a unique PSE for F . It is formally described as a triple, since it represents a periodic

support set SP = (i, p, s). The last element in the support set is defined as tj = ti + p · (s− 1) and the next

expected timestep as tn = tj + p. Since descriptors are created, updated, and deleted as the input stream is

read, the following definition describes the different states in which a descriptor could be at any given time.

Definition 3.5.1. (Descriptor states) At timestep t, a descriptor D for a subgraph F is live if tn > t

or if tn = t and F is present at Gt. A descriptor that is not live is not currently exhibiting periodic behavior;

it cannot change state again once it is not live. A descriptor where ti = tj is a special case called an anchor

descriptor, as it does not represent a periodic support set but could potentially become one if the associated

subgraph F is observed at a future timestep. An anchor descriptor is defined to have a period of 0. An

anchor descriptor is always live, unless Pmax is defined and t− ti > Pmax, in which case the anchor can never

lead to a valid PSE with period at most Pmax, and is no longer needed.

3.5.3 Tree Update Algorithm

We now describe the update algorithm for the pattern tree, which is the core of the mining process. It is

called once for each timestep that is read from the input. Starting with an initial pattern tree with an empty

root treenode, at timestep t the algorithm traverses the pattern tree in a breadth-first search (BFS) to update

treenodes with the new information contained in Gt. For each Gt, we are only interested in treenodes which

might be affected by the new information. This excludes any subgraph F which has an empty maximal

common subgraph with Gt. In most cases, this process eliminates some branches of the pattern tree from

the BFS traversal. At each treenode N/F where F has some part in common with Gt, we update descriptors

at N in a manner described below. We end each tree update by ensuring that a treenode for Gt in its

7An alternative to the tree representation would be to construct a full subgraph lattice [Carpineto and Romano, 2004], with
a corresponding increase in time and space complexity. Whether lattices are more efficient given the typical sparsity of dynamic
networks is a question for future research.

16

entirety exists in the tree with an anchor descriptor for timestep t. This accounts for the possibility that Gt

in its entirety is the first occurrence of a (future) periodic subgraph. If such a treenode does not exist, it is

created at a location which does not violate the subgraph property of the tree, such as the root.

During the breadth-first traversal of the tree, one of the following three conditions holds at each treenode

N/F . Let C = F ∩Gt be the maximal common subgraph of Gt and F .

1. Update descriptors: If F ⊆ Gt, i.e. if F = C, then F has appeared in its entirety at timestep t. Let D

be any descriptor in N and tn = tj + p be the next expected timestep for D.

(a) If tn = t, then D has appeared where it was expected. Timestep t is added to D’s support to

ensure temporal maximality.

(b) If tn < t, then D has not appeared when expected and is thus no longer live. It is written to the

output stream if its support is greater than or equal to σ, and removed from the tree.

(c) If tn > t, then nothing is done.

(d) If p = 0, then D is an anchor descriptor. Given that timestep t is the second occurrence of F , a

new descriptor D′ is spawned with period p′ = t− ti and phase offset m′ = (ti − 1) mod p′. If N

does not contain a live descriptor with the same period and phase offset, D′ is added to the list

of descriptors at N .

2. Propagate descriptors: If C 6= ∅ and the condition above does not hold, then a subgraph C of F is

present at timestep t, instead of F in its entirety. This happens, for example, when a formerly periodic

subgraph F fractures into a smaller subgraph C that continues F ’s periodic behavior. If a treenode for

C does not already exist in the tree, determined using the subgraph hash map, it is created as a child

of N (to satisfy the subgraph relationship). Let D be any descriptor at N . If tn = t, then D represents

a PSE which subgraph C must inherit and continue. The treenode for C receives a copy of D, if a live

descriptor of the same period and phase offset does not already exist. The pattern < F,D > is written

to the output stream if the support of D is greater than or equal to σ, and then D is removed from

treenode N .

3. Dead subtree: If C = ∅, then Gt and F have no common subgraph, and no descriptors at N are

directly affected by the observation of Gt. Furthermore, no treenode that is a descendant of N will

have any common subgraph with Gt either, since they are all subgraphs of F . The subtree rooted at

N is therefore eliminated from the rest of the tree traversal.

Figure 3.6 shows the pattern tree at each timestep during the execution of the algorithm on the network

from Figure 3.3. For clarity, we have described a very basic version of the algorithm. Two notable aspects of

this algorithm are (1) that it outputs all PSEs, which are a superset of all PPSEs, and (2) it can dynamically

calculate the purity measure. Non-parsimonious PSEs can be post-processed out of the output, but in

Section 3.5.6, we show how this can be accomplished dynamically.

3.5.4 Correctness

The pattern tree is intended to hold all PSEs seen up to timestep t. We prove by induction that this

consistent state holds at any point during the execution of the algorithm. We define a consistent state for

17

Algorithm 1 UpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: C ← Gt ∩N
5: if C is not empty then

6: if N ⊆ Gt then

7: UpdateDescriptors(N)
8: else

9: W ← FindNode(N) or NewNode(N,C)
10: PropagateDescriptors(N,W)
11: end if

12: push(Q, children(N))
13: end if

14: end while

15: W ← FindNode(Gt) or NewNode(root, Gt)
16: Add anchor descriptor for Gt to W .

Figure 3.6: The pattern tree at each timestep for the dynamic network shown in Figure 3.3, considering only
edges for brevity.

18

the pattern tree as the following four conditions.

Definition 3.5.2. (Pattern Tree Consistency Conditions) The pattern tree is in a consistent state

if the following four conditions are met:

1. The subgraph property of the pattern tree holds, i.e. all descendants of a treenode N/subgraph F

contain subgraphs that are proper subgraphs of F .

2. All descriptors in the pattern tree are unique, i.e. no two descriptors D1 and D2 anywhere in the tree

share the same subgraph and the same support set.

3. All PSEs with support SP ≥ 2 encountered in the data stream so far have a descriptor (and thus a

treenode) in the tree.

4. All non-anchor descriptors represent PSEs that are closed up to timestep t, i.e. for a descriptor D in a

treenode N/subgraph F , F is the maximal common subgraph of the support set described by D, and

the support set is temporally maximal at timestep t as per Definition 3.2.1.

If the tree is in a consistent state at timestep t, then the remaining output up to timestep t can be

obtained by traversing the tree once and writing every subgraph/descriptor pair where the support of the

PSE is |SP | ≥ σ. The tree is initially empty except for a dummy root node. It is therefore consistent because

the four consistency conditions are vacuously true. For the inductive hypothesis, assume that the pattern

tree is consistent after processing timestep Gt−1. Then after processing Gt, we show below that the tree is

still in a consistent state, thus proving that the tree is in a consistent state during and at the end of the

execution of the mining algorithm. The following is the statement and proof of the inductive step.

Theorem 3.5.1. If the pattern tree is in a consistent state after processing Gt−1, then the pattern tree is

also in a consistent state after using Algorithm 1 to process Gt.

Proof. On reading Gt from the input stream, the first two consistency conditions are not violated because

no new subgraphs or descriptors have been added to the tree. Conditions 3 and 4, on the other hand, might

be violated because Gt could potentially contain a previously unseen PSE, violating condition 3, or require

that an existing one have its support set extended to include t, violating condition 4. Therefore, we start by

focusing on events that would violate the latter two consistency conditions, while showing that the first two

remain satisfied during processing. We describe each event in turn and how the consistency of the tree is

violated, as well as the correctness of the actions taken to restore consistency. The following is an exhaustive

list of such events, along with the action that the algorithm takes:

Case 1: Gt contains the first occurrence of a new PSE, violating condition 3; an anchor descriptor starting

at timestep t is added to a treenode for Gt in its entirety.

Case 2: Gt contains the nth occurrence of a new PSE, where n > 1 and prior occurrences were contained

within some other PSE, violating condition 3; the PropagateDescriptors function is called. When

n = 1, we have case 1 above.

Case 3: Gt contains the nth occurrence of an already existing PSE, where n > 1, violating condition 4;

the UpdateDescriptors function is called. Timestep t cannot be the first occurrence for an existing

PSE, by definition.

19

Case 1:

The first possibility is that Gt could contain the first occurrence of a new PSE. Since we have no way of

knowing the future, we always assume that the entire graph Gt is going to become a periodic subgraph in the

future with timestep t as its first timestep.8 In Algorithm 1, a treenode W is added for Gt at the root if one

does not already exist in the tree, and an anchor descriptor starting at t is added to W . Adding W at the

root is a simple way to ensure that condition 1 is never violated. The descriptor is guaranteed to be unique,

because no other PSE of Gt will have started at timestep t prior to Gt having been observed, and therefore

condition 2 is not violated. If we are correct about the assumption that timestep t is the first occurrence of

a new PSE for Gt, then we have ‘presciently’ added a descriptor and treenode for it at the correct time, and

ensured that condition 3 is not violated. On the other hand, if Gt never occurs again, then its treenode will

only contain an anchor descriptor, which is exempt from condition 4. Therefore, case 1 no longer causes the

tree to be inconsistent.

Case 2:

Suppose that Gt is the nth occurrence of a new PSE, for n > 1. This happens when a subgraph stops

exhibiting periodic behavior, but a smaller portion of it continues to do so. The treenode for the smaller

subgraph might therefore need to ‘inherit’ some descriptors from the treenode of the larger subgraph. For

each treenode N/F , case 2 arises when F ∩ Gt 6= ∅ except when F ⊆ Gt (this exception is handled in the

next case). Let C = F ∩ Gt, the maximal common subgraph of F and Gt. Let W be the treenode for C,

which is created in the tree (at a position that does not violate condition 1) if it does not already exist.

We now need to copy descriptors where tj + p = t from N to W , since these descriptors would have been

updated if F had been observed in its entirety. Let D be one such descriptor. D is now no longer live for

N/F because it has failed to appear in its entirety at timestep t. The propagation process transfers D to W

if W does not already have a live descriptor of the same period and phase offset D and an earlier starting

position. Since treenodes N and W represent different subgraphs, copying D from N to W does not violate

condition 2. Furthermore, since D was temporally maximal before, it is again temporally maximal with the

addition of t to its support set. This handles conditions 4 and 3, and case 2 no longer causes the tree to be

inconsistent.

Case 3:

Finally, we handle the case that Gt is the nth occurrence of an existing PSE, for n > 1. This happens when

a treenode N/F has F ⊆ Gt, which means that F has appeared in its entirety and its descriptors need to be

updated. The update process scans each descriptor D in treenode N . If D is next expected at timestep t,

then t is added to its support set by setting tj = t. This satisfied consistency condition 4. If D is no longer

exhibiting periodic behavior, i.e. if tj + p < t, then D is flushed to the output stream if appropriate and

then deleted. The other conditions are not violated. The final case is therefore handled correctly, and the

pattern tree is again in a consistent state.

We have inductively shown that Algorithm 1 results in a consistent tree after processing each timestep

Gt in increasing order of t. This proves the correctness of the algorithm.

8Incidentally, there is at least one dynamic network where each timestep contains the first occurrence of a new PSE – the
worst-case construction from Section 3.4.

20

3.5.5 Time and Space Complexity

Given that the tree consistency conditions hold, the number of descriptors (and therefore nodes) in the tree at

timestep T is bounded by Theorem 3.4.2 at σ = 2. As each timestep is read, the tree is traversed once. When

descriptors are created or propagated, we ensure that at most one live descriptor exists at each treenode for

a given period and phase offset. If the list of periods and phase offsets of live descriptors in the treenode

are represented as sparse two-dimensional arrays, then lookup can be performed efficiently in constant time

with O(P 2
max) or O(T 2) space complexity to hold the arrays. Thus, the worst-case time complexity of the

algorithm involves traversing each descriptor in the tree once for each timestep and calculating the maximal

common subgraph at each treenode. From Property 3.1.1, the maximal common subgraph of two graphs

can be calculated in time O(V +E). This yields a total time complexity of O((V +E)T 3 lnT) when Pmax is

not specified. When Pmax is specified, the range of allowable periods is bounded in Theorem 3.4.2 and the

maximum number of patterns can drop very significantly. The worst-case space complexity of our algorithm

is O((V + E + P 2
max)T

2 lnT) when Pmax is specified. In practice, however, the tree size is usually several

orders of magnitude smaller than the worst-case bound, as we will demonstrate.

3.5.6 Extensions to the Basic Algorithm

We have described a basic version of the mining algorithm in Section 3.5.3. A number of algorithmic

refinements are possible to increase efficiency, but at the cost of conceptual simplicity. We briefly describe

some of these refinements below.

Mining Parsimonious PSEs

The most important enhancement is to make the algorithm dynamically output only parsimonious PSEs.

Recall the subsumption conditions from Definition 3.2.3. A simple way to modify Algorithm 1 to only output

parsimonious PSEs is by adding an indicator bit to each descriptor to indicate subsumption. This bit is

initially cleared when the descriptor is created. When any descriptor D from treenode N/F is flushed, its

subsumed bit is first checked. If it is cleared, then D is compared to all other live descriptors at N . If D is

subsumed by another descriptor, it is not written to the output. On the other hand, if D subsumes (as of

timestep t) some other descriptor D′, the subsumed bit for D′ is set. If the support of D′ increases in the

future, its subsumed bit is cleared since Condition 3 from Definition 3.2.3 is no longer true. However, if its

support does not increase, then all the conditions from Definition 3.2.3 hold and D′ is not parsimonious. It

will not be flushed when the cessation of its periodic behavior is finally confirmed.

Sorted Descriptor List

The list of descriptors at each node can be stored sorted by the next expected timestep of each descriptor.

At timestep t, only descriptors which are expected at or before t will be examined, in addition to at most

one descriptor that is expected after timestep t. This cuts down on the number of descriptors that need to

be examined during each tree update, at the computational cost of having to sort the list of descriptors after

each update. Since the number of descriptors per treenode is generally not very large, the computational

overhead is minimal in practice.

21

Lazy Tree Updates

In practice, the algorithm spends most of its running time calculating intersections of integer sets (line 7 in

Algorithm 1). Although the maximum common subgraph of two graphs is calculated in time linear in the

number of vertices and edges, the size of the graphs results in a relatively expensive intersection computation.

The sparsity of the network generally results in a relatively small number of treenodes, which means that

many such intersections between large sets must be performed. Thus, to improve the practical efficiency

of the algorithm, we can delay calculating intersections until it is absolutely necessary. This results in the

lazy-intersection tree update algorithm shown in Algorithm 2. The tradeoff is that the total support of

patterns, and therefore the purity measure, cannot be dynamically calculated.

Algorithm 2 LazyUpdateTree(Gt)

Require: Gt is the graph of timestep t
1: Q← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: lazy ← true
5: while lazy = true do

6: D ← next descriptor at N
7: next ← last(D) + period(D)
8: if D is an anchor or next = T then

9: lazy ← false
10: else

11: if next < T then

12: flush D to output and delete
13: else

14: break
15: end if

16: end if

17: end while

18: if lazy = false then

19: C ← Gt ∩N
20: if C is not empty then

21: if N ⊆ Gt then

22: UpdateDescriptors(N)
23: else

24: W ← FindNode(N) or NewNode(N,C)
25: PropagateDescriptors(N,W)
26: end if

27: push(Q, children(N))
28: end if

29: else

30: push(Q, children(N))
31: end if

32: end while

33: W ← FindNode(Gt) or NewNode(root, Gt)
34: Add anchor descriptor for Gt to W .

22

Using a Timeline to Trim the Tree

The timeline associates each future timestep with a list of treenodes that have at least one descriptor expected

at that timestep. It can be dynamically updated at an insignificant cost (constant or logarithmic) once per

treenode update, and stored in space linear in the number of treenodes. After the tree update for timestep t,

all treenodes that are still associated with timestep t are guaranteed not to have been visited during the tree

update, and have at least one descriptor which is no longer periodic. These treenodes can then be visited

and the invalid descriptors removed, in time proportional to the number of descriptors to be removed. Thus,

at the end of each tree update operation, the treenode only contains descriptors that are live at the next

timestep. This ensures that the pattern tree contains a minimal number of descriptors and treenodes at any

given timestep.

3.6 Experimental Evaluation

We use four real-world dynamic social networks to evaluate our algorithm as well as some characteristics

and applications of periodic subgraph mining. We also use artificial data to compare the performance of our

algorithm with that of SMCA [Huang and Chang, 2005], a periodic pattern mining algorithm that generates

periodic patterns in a level-wise search similar to Apriori and without closed or parsimonious considerations.

SMCA is a four-phase algorithm and we only use the first two phases (SPMiner and MPMiner), since their

combined functionality is comparable to our algorithm.9 We first report results on the comparison with

SMCA on synthetic data, before moving on to evaluating our algorithm on real dynamic networks.

We implemented our algorithm in C++, incorporating all the optimizations described in Section 3.5.6.

The subgraph hash map was implemented using the Google dense_hash_map library10, optimized for speed

over memory usage. The experiments with synthetic data were run on a dual-core Intel Pentium D system

running at 3.2 GHz with 3 GB of RAM and Linux kernel 2.6.28. The experiments with real data were run on

a quad-core Intel Xeon server running at 2.6 GHz with 24 GB of RAM and Linux kernel 2.6.22. In all cases,

computation time is reported as the sum of the user (computation) and kernel (I/O, etc.) CPU time reported

by the Linux getrusage() system call. Memory usage is the maximum resident set size reported by the

Linux proc filesystem. The SPMiner and MPMiner components of the SMCA algorithm were implemented

in C++ according to the pseudocode in [Huang and Chang, 2005], and use the same input, timing and

output mechanisms as our algorithm.11

3.6.1 Datasets

We used dynamic networks collected from a variety of sources and covering a range of interaction dynamics.

These networks are described below.

9The functionality is comparable in terms of the stated goal of the algorithm only, which is to mine periodic ‘multiple event
1-patterns’. SMCA suffers from the fact that it does not generate closed or parsimonious output, thus increasing its computation
time and output size relative to our algorithm, without adding any extra information.

10http://code.google.com/p/google-sparsehash/, version 1.4.
11A misprint in the pseudocode for SPMiner in [Huang and Chang, 2005, (Fig 3, line 12)] was corrected. For MPMiner, we

used the Time-Based Enumeration (TBE) scheme, since the Segment-Based Enumeration (SBE) scheme exhausted all available
system memory for the datasets we tried.

23

Dataset Vertices Timesteps Avg. density S Pmax

Enron 82,614 2,588 0.028 ± 0.064 3 40
IMDB Photos (full) 29,257 13,987 0.097 ± 0.21 3 400
Plains Zebra 313 1,276 0.31 ± 0.27 6 400
Reality Mining 100 2,940 0.23 ± 0.17 2 60
Server Log 1 (days) 111,108 783 0.024 ± 0.019 2 40
Server Log 2 (hours) 111,108 18,807 0.24 ± 0.3 2 960

Table 3.1: DATASET CHARACTERISTICS, SMOOTHING (S), AND MAXIMUM PERIOD (Pmax) VAL-
UES USED FOR EXPERIMENTAL EVALUATION.

Enron E-mails. The Enron e-mail corpus is a publicly available database of e-mails sent by and to employ-

ees of the now defunct Enron corporation.12 Timestamps, senders and lists of recipients were extracted

from message headers for each e-mail on file. We chose a day as the quantization timestep, with a

directed (unweighted) interaction present if at least one e-mail was sent between two individuals on a

particular day.

Plains Zebra. Ecologists are interested in studying the association patterns of wild Plains zebras (Equus

burchelli) in their natural habitat. For this dataset, social interactions between animals were recorded

in a nature reserve in Kenya by behavioral ecologists from Princeton University, based on direct visual

observations [Fischhoff et al., 2007, Sundaresan et al., 2007, Juang et al., 2002]. Zebras are uniquely

identifiable by the pattern of stripes on various parts of their bodies. The data was collected by

ecologists making visual scans of the herds, typically once a day over periods of several months. Each

entity in the dynamic network is a unique Plains zebra and an interaction represents social association,

as determined by spatial proximity and the domain knowledge of ecologists.

Reality Mining. Cellphones with proximity tracking technology were distributed to 100 students at the

Massachusetts Institute of Technology over the course of an academic year [Eagle and Pentland, 2006].

The timestep quantization was chosen as 4 hours [Clauset and Eagle, 2007].

IMDB Celebrities. The Internet Movie Database (IMDB)13 maintains a large archive of tagged, disam-

biguated and dated photographs of individuals associated with the production of commercial entertain-

ment, including actors, directors and musicians. One might reasonably assert that a degree of social (or

at least professional) association exists between people photographed together by the popular press.

Thus, similar to the methodology of the Plains zebra sightings, we collected metadata on 193,707

photos14, which collectively represent a partial structure of the social network of people associated

with the entertainment industry. The quantization period was one day. Although the time span of the

dataset is just under forty years, most of the interactions occur in the later portion of the dataset.

Server Logs. We used the HTTP access logs from an Apache web server hosting organization and personal

pages for the Laboratory of Computational Population Biology at the University of Illinois at Chicago.15

12Available at http://www.cs.cmu.edu/~enron/
13http://www.imdb.com
14In [Lahiri and Berger-Wolf, 2008], we only used photos with two or more people, which is the reason for the dataset size

discrepancy between versions. For this dataset, it is also informative to represent singleton (disconnected) vertices, which we
have done here.

15http://compbio.cs.uic.edu/

24

Unrestricted Pmax, no smoothing
Unrestricted Pmax with smoothing
Restricted Pmax, no smoothing
Restricted Pmax with smoothing

 1

 10

 100

 1,000

 10,000

 100,000

Enron IMDB Zebra Reality Log 1 Log 2

T
im

e
(s

)

Dataset

(a) Mining time

Unrestricted Pmax, no smoothing
Unrestricted Pmax with smoothing
Restricted Pmax, no smoothing
Restricted Pmax with smoothing

 1

 10

 100

 1,000

 10,000

Enron IMDB Zebra Reality Log 1 Log 2

M
em

or
y

(M
B

)

Dataset

(b) Memory usage

Figure 3.7: Performance of the periodic subgraph mining algorithm at σ = 3, shown with an exponential
y-axis.

Each vertex is either an IP address on the Internet or a file hosted on the web server. A directed edge

from an IP address to a file indicates that the file was successfully accessed by a host at the IP address,

creating a bipartite graph at each timestep. The log data runs from April 2007 to May 2009. We used

two different quantizations of one day and one hour per timestep.

3.6.2 Results on Natural Data

Algorithm Performance

We first ran a series of experiments on our algorithm with σ = 3 and no smoothing, i.e. mining only perfectly

periodic patterns. We then ran a second set of experiments with Pmax set to restricted values, and a third set

of experiments with σ = 3 and variable amounts of smoothing per dataset. Table 3.1 summarizes the Pmax

and smoothing values used for each dataset, based intuitively on typical periodicities and how much noise

we would expect in each dataset. The second and third set of experiments demonstrate the performance of

the algorithm in online and noisy situations, respectively.

Figure 3.7 shows the running time and memory usage of our algorithm under different circumstances.

The black column shows the case when no smoothing is used and the maximum period is unrestricted. This

might be considered a typical ‘offline’ analysis scenario. An interesting point to note is that Reality Mining

takes much more time to complete mining than the much larger Enron dataset, most likely due to the density

of periodic patterns in it. In the typical online analysis scenario with a restricted Pmax, the algorithm took

less than 30 seconds to execute and used less than 40 MB of memory in all cases. As expected, restricting

the maximum period has a very significant effect on the performance of the algorithm.

Figure 3.8 shows the size of the pattern tree at each timestep for the Enron and Reality Mining datasets.

It can be seen that the actual tree size is a small fraction of the theoretical upper bound. Furthermore,

limiting the maximum period of mined patterns has a large impact on reducing the tree size, as expected.

The Enron plot dips dramatically after about timestep 2,000 because most timesteps after that are empty.

A large number of descriptors are flushed from the pattern tree when the empty timesteps are encountered.

No such dip occurs in the Reality Mining dataset, which is densely periodic and continues to exhibit periodic

behavior right up to the very end of the observation period.

25

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

0 500 1000 1500 2000 2500

D
e
s
c
ri
p
to

rs
 i
n
 t
re

e

Timesteps

Theoretical bound

Smooth = 3

Normal

Pmax = 40

(a) Enron

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

0 500 1000 1500 2000 2500

D
e
s
c
ri
p
to

rs
 i
n
 t
re

e

Timesteps

Theoretical bound

Pmax = 60

Normal

Smooth = 2

(b) Reality Mining

Figure 3.8: Number of pattern tree descriptors with no smoothing or restrictions on period (‘normal’), and
for various smoothing and Pmax values, compared to the theoretical bound.

Characterizing Inherent Periodicity

In addition to investigating specific periodic interaction patterns, a second goal for mining parsimonious

PSEs is to analyze global periodicities in the system. In the context of dynamic networks, the goal would

be to characterize the gross dynamics of the individuals in the system. Figure 3.9 shows histograms of the

periods of patterns mined from the Enron, IMDB, Server Log and Plains Zebra datasets. For Enron, we

restrict our attention to patterns with a high average purity, i.e. patterns which are likely to capture truly

periodic behavior. Daily interaction patterns are the most prevalent periodic patterns16, followed by weekly

patterns, as manifested by the clear peak at p = 7. For the IMDB dataset, we notice a similar peak at about

p = 364. This can be explained by celebrity sightings at annual events – awards shows, for example. Thus,

we are able to capture and characterize plausible natural periodicities in human interactions with no prior

knowledge about the datasets. The hour-quantized Server Log dataset shows a number of interesting peaks

at about 24, 48 and 168 hours (the last one corresponding to a periodicity of one week). Note that there

is also relatively little variance around the peak at one week, suggesting that these accesses were performed

automatically. Inspecting patterns at these periods revealed the activity of various search engine crawlers,

confirmed by checking ownership of IP netblocks and User-Agent strings in the HTTP requests. The Plains

Zebra dataset showed a wide range of periodicities, as one might expect of animal behavior, with no strongly

discernible peaks.

Figures 3.9a and 3.9c are histograms of the periods of patterns that are above a minimum purity threshold.

Clearly, changing this threshold could result in a different picture, as patterns of lower purity get included.

Figure 3.10 shows a two-dimensional view of the histograms as a density plot. Each row represents a

histogram as in Figure 3.9, but thresholded by the value of the y-axis. Darker cells represent a higher

concentration of patterns at that period (relative to the most concentrated cell in the row), and correspond

to the peaks in Figure 3.9. The top-most row is the distribution of the periods of patterns that only occur

periodically, i.e., never in-between periodic occurrences, whereas the lowest row places no constraints and

shows the period distribution of all mined patterns. In Figure 3.10a, for example, the row corresponding to

16Too much importance should not be attached to patterns of period 1 in plots thresholded by purity, since all patterns of
period 1 necessarily have purity 1.

26

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

N
u
m

b
e
r

o
f
p
a
tt
e
rn

s

Period (days)

1 week

(a) Enron, avgPurity ≥ 0.7

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

o
f

p
a

tt
e

rn
s

Period (days)

364 days

(b) IMDB

0

50

100

150

200

0 50 100 150 200

N
u

m
b

e
r

o
f

p
a

tt
e

rn
s

Period (hours)

1 day

2 days

3 days

1 week

(c) Server Log 2, avgPurity ≥ 0.5

0

20

40

60

80

100

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

p
a

tt
e

rn
s

Period (days)

3−6 weeks

(d) Plains Zebra

Figure 3.9: Number of patterns at each period.

27

1 7 14 21 28 35 42

0

1

0.5

Period (days)
M

in
im

u
m

 p
u
ri

ty

(a) Enron

M
in

im
u

m
 p

u
ri

ty

0

1

0.5

Pe riod (hour s)

4 24 48 72 96 120 144 168

(b) Reality Mining

M
in

im
u

m
 p

u
ri

ty

0

1

0.5

Pe riod (da ys)

1 5 10 15 20 25 30 35 40

(c) Plains Zebra

Figure 3.10: Pattern density at each minimum purity threshold. Each row shows the distribution of pattern
periods for patterns with purity at or greater than the y-axis value. Darker cells indicate more patterns.

a y-value of 0.7 represents the histogram in Figure 3.9a.

The Enron and Reality Mining datasets show strong daily and weekly periodicities, as might be expected

from human interactions. This commonality is interesting because the interactions occur by different mech-

anisms in each dataset – by e-mail in the Enron dataset, and by physical proximity in the Reality Mining

dataset. The Plains Zebra dataset, while not showing periodicities as strong as the human datasets, seem

to contain relatively dense region at periods between 25 and 38. It is currently unclear whether this region

indicates behavior that is ecologically meaningful, or is an artifact of the data.

Qualitative Analysis

We now turn our attention to some qualitatively interesting periodic subgraphs discovered by our algorithm

illustrating a range of periodic behavior. Figure 3.11a illustrates a somewhat complex pattern from the

IMDB photo database that repeated approximately every week. Although the support is relatively low,

what is interesting about this subgraph is the repeated non-trivial grouping of people, all of whom turned

out to be contestants on a weekly ‘reality television’ show. Figure 3.11b is also from the IMDB database

and is an approximately annually repeating pattern. The three individuals in the clique are actresses in a

28

popular (circa 2004) television show, while the fourth vertex is the spouse (as of 2009) of one of the actresses.

Given this context, the low average purity of the pattern is to be expected as the three actresses are very

likely to have appeared together in between what are likely to be award shows. The nontrivial links in such

patterns are particularly interesting and are indicative of the show’s progression or relationships other than

co-starring.

The subgraph shown in Figure 3.11c has the highest periodic support in the Enron dataset, repeating

every day for 84 consecutive days, including weekends. This is representative of a large number of similar

periodic patterns in Enron, in which one person emails a group of people with periods ranging from 1 to 14

days. As shown earlier in Figure 3.9, weekly emails seem to be particularly popular in a corporate setting

such as this, and could be used to infer functional communities within the corporation.

Finally, we turn to the Plains Zebra dataset and to one of the most intriguing patterns shown in Fig-

ure 3.11d. Although it is quite likely that the period of 7 days is an artifact of the manner in which the

population was sampled, the high purity of the pattern indicates that this is a relatively stable grouping.

It is also by far the largest and most repetitive such pattern, parts of which are periodic at other times as

well. In contrast, the subgraphs that repeat over multiple months are shown in Figures 3.11e and 3.11f.

Although the support of the latter two patterns is relatively low, the high purity of Figure 3.11f stands out

and is representative of a large number of small but highly periodic patterns. Moreover, all the patterns are

of interactions of stallion male zebras and correspond to their harems grouping for a period of time. Such

groupings are indeed considered more stable for short periods of time than bachelor associations [Fischhoff

et al., 2007].

3.6.3 Comparison to SMCA

We generated relatively small synthetic datasets with different characteristics to compare the performance

of our algorithm with the SMCA algorithm on simple interaction data. Starting with a population of

30 individuals, we generated a single graph of density d. The edges of this graph were then sampled

independently at random for each of the T timesteps. Although this is not intended to be a realistic model

of a social network, it allows us to control two parameters crucial to the mining process – the overall density

of the dynamic network, and the number of timesteps. Since real social networks are generally sparse, we

used two values for d: 0.1 and 0.15. For each of these values, T was varied from 100 to 1000 in increments

of 100.

Ten random dynamic networks were generated for each combination of T and d, and converted to their set

representations. Both algorithms were run on the same set of synthetic networks with a minimum support

value of σ = 3 and the maximum period unrestricted, calculated using Proposition 3.4.2 for each value of

T . All algorithms were limited to 8 GB of disk space for storing their output, which can be considered

reasonable given that this value is several orders of magnitude larger than the size of the input networks.

Figure 3.12 shows the performance of SMCA compared to our algorithm. The computation time used by

both algorithms is comparable for density d = 0.1, although SMCA does not scale as well as our algorithm.

For a slightly higher density of d = 0.15, the number of periodic patterns is expected to increase as well. The

computation times are no longer comparable between algorithms, as shown in Figure 3.12b. In Figures 3.12b

and 3.12d, there are no data points for SMCA beyond T = 500 since the algorithm reached the maximum

output size of 8 GB prior to completion. This is partly caused by the fact that SMCA does not output

29

BillyRayCyrus

JoeyFatone

HeatherMills

ApoloOhno

LailaAli

JohnRatzenberger

(a) IMDB: period 7 ± 2, support
3, avg. purity 1

FelicityHuffman

EvaLongoriaParker

NicolletteSheridanWilliamH.Macy

(b) IMDB: period 364, support 3,
avg. purity 0.4

al@friedwire.com

kevin.cline eric.saibi seung-taek.oh ryan.williams juan.padron

(c) Enron: period 1, support 84, avg. purity 1. Bold circles
represent @enron.com e-mail addresses.

287

354

659

027

472

602

717

531

791

1132

050

626

649

139

587

051

191

402

1056

121

131

(d) Plains: period 7, support 4, avg. purity 0.94.

295 744

641

485 727 1143

(e) Plains: period 61±6,
support 3, avg. purity 0.71

667

162

(f) Plains: period
81±6, support 4, avg.
purity 1

Figure 3.11: Examples of some interesting periodic subgraphs.

30

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

M
in

in
g

tim
e

(s
)

Timesteps

SMCA
PSEMiner

(a) Mining time: d = 0.1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500 600 700 800 900 1000

M
in

in
g

tim
e

(s
)

Timesteps

SMCA
PSEMiner

(b) Mining time: d = 0.15

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

at
te

rn
s

Timesteps

SMCA
PSEMiner

(c) Number of mined patterns: d = 0.1

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

at
te

rn
s

Timesteps

SMCA
PSEMiner

(d) Number of mined patterns: d = 0.15

Figure 3.12: The performance of SMCA compared to our algorithm, for synthetic networks of different
densities d. Error bars for PSEMiner are too small to see.

31

closed or parsimonious patterns, which is evident from the number of patterns generated by SMCA, shown

in Figures 3.12c and 3.12d on a logarithmic scale.

Thus, our algorithm scales much better than SMCA. The number of patterns generated by SMCA is

generally about three orders of magnitude larger than the number of parsimonious patterns output by our

algorithm. The intractability of non-parsimonious periodic pattern mining is one of the main reasons we

could not use SMCA on the larger natural datasets, where the number of vertices, timesteps, and the average

timestep density are much higher than the values used here.

3.7 Summary

We have proposed and formalized the periodic subgraph mining problem for dynamic networks and analyzed

the computational complexity of enumerating all periodic subgraphs. We have shown that there are at

most O(T 2 ln T
σ
) closed periodic subgraphs at minimum support σ in a dynamic network of T timesteps.

Furthermore, we have described a polynomial time, online algorithm to mine all periodic subgraphs, including

a smoothing mechanism for mining subgraphs that are not perfectly periodic. We have also proposed a new

measure, purity, for ranking mined subgraphs according to how perfectly periodic a subgraph is. We have

demonstrated our algorithm on four real-world dynamic social networks, spanning interactions between

corporate executives, college students, wild zebra, and Hollywood celebrities. Our algorithm efficiently

mines all periodic patterns, is provably tractable, and is a meaningful alternative to using frequent subgraph

mining to look for interesting patterns in dynamic networks. We have also shown that periodic subgraphs

can be used as an effective characterization of the dynamics of various systems. Our technique was able to

discover plausible natural periodicities in many of the systems we examined, and shows promise as a tool

for exploratory analysis of interaction dynamics.

There are a number of interesting avenues for future research. One such direction is to incorporate

probabilistic models of periodicity instead of strictly combinatorial ones. Yang et al. [Yang et al., 2002] and

Ma and Hellerstein [Ma and Hellerstein, 2001] are two examples of such attempts; it would be interesting

to see how well they perform in dynamic networks. Along the lines of various studies on assessing the

interestingness of frequent patterns [Bringmann and Zimmermann, 2009, Tatti, 2008, Yan et al., 2008], a

method for assessing the statistical significance of mined patterns under different statistical models would be

valuable in dynamic networks, especially in the context of inter-disciplinary research. A number of extensions

can also be made to the algorithm we have presented in this chapter. These include an extension to mine

complex periodic patterns, similar to the types of patterns mined in [Han et al., 1999,Huang and Chang,

2005,Yang et al., 2003,Ma and Hellerstein, 2001], and different algorithms or heuristics for manipulating the

structure of the pattern tree to increase efficiency. The concept of noise could also be extended to discover

noisy subgraphs instead of just noisy periodicities. Finally, we believe that the capabilities of the method,

especially in an inter-disciplinary context, can only be fully explored if the results of the mining process are

presented or visualized in a succinct but insightful manner. This is a challenging and open question.

32

Bibliography

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association

Rules in Large Databases. In Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 487–499, San

Francisco, CA. Morgan Kaufmann Publishers Inc.

[Agrawal and Srikant, 1995] Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proc. of the

11th Intl. Conf. on Data Engineering, pages 3–14, Washington, DC, USA. IEEE Computer Society.

[Boros et al., 2002] Boros, E., Gurvich, V., Khachiyan, L., and Makino, K. (2002). On the complexity of

generating maximal frequent and minimal infrequent sets. In Proc. of the 19th Annual Symposium on

Theoretical Aspects of Computer Science, pages 133–141, London, UK. Springer-Verlag.

[Bringmann and Zimmermann, 2009] Bringmann, B. and Zimmermann, A. (2009). One in a million: picking

the right patterns. Knowledge and Information Systems, 18(1):61–81.

[Carpineto and Romano, 2004] Carpineto, C. and Romano, G. (2004). Concept Data Analysis: Theory and

Applications. John Wiley & Sons.

[Chapanond et al., 2005] Chapanond, A., Krishnamoorthy, M. S., and Yener, B. (2005). Graph theoretic

and spectral analysis of Enron email data. Comput. Math. Organ. Theory, 11(3):265–281.

[Cheng et al., 2008] Cheng, J., Ke, Y., and Ng, W. (2008). A survey on algorithms for mining frequent

itemsets over data streams. Knowledge and Information Systems, 16(1):1–27.

[Clauset and Eagle, 2007] Clauset, A. and Eagle, N. (2007). Persistence and periodicity in a dynamic prox-

imity network. DIMACS/DyDAn Wkshp. on Comput. Meth. for Dynamic Interaction Networks.

[Dickinson et al., 2003] Dickinson, P. J., Bunke, H., Dadej, A., and Kraetzl, M. (2003). On Graphs with

Unique Node Labels, volume 2726 of Lecture Notes in Computer Science, pages 409–437. Springer Berlin.

[Diesner and Carley, 2005] Diesner, J. and Carley, K. M. (2005). Exploration of Communication Networks

from the Enron Email Corpus. In Proc. of the 2005 SIAM Wkshp. on Link Analysis, Counterterrorism

and Security, pages 3–14.

[Eagle and Pentland, 2006] Eagle, N. and Pentland, A. (2006). Reality mining: sensing complex social

systems. Personal and Ubiquitous Computing, 10(4):255–268.

[Elfeky et al., 2005a] Elfeky, M. G., Aref, W. G., and Elmagarmid, A. K. (2005a). Periodicity detection in

time series databases. IEEE Trans. on Knowledge and Data Engineering, 17(7):875–887.

33

[Elfeky et al., 2005b] Elfeky, M. G., Aref, W. G., and Elmagarmid, A. K. (2005b). WARP: Time warping for

periodicity detection. In Proc. of the Fifth IEEE Intl. Conf. on Data Mining, pages 138–145, Washington,

DC, USA. IEEE Computer Society.

[Fischhoff et al., 2007] Fischhoff, I. R., Sundaresan, S. R., Cordingley, J., Larkin, H. M., Sellier, M.-J.,

and Rubenstein, D. I. (2007). Social relationships and reproductive state influence leadership roles in

movements of Plains zebra, Equus burchellii. Animal Behaviour, 73(5):825–831.

[Garofalakis et al., 1999] Garofalakis, M., Rastogi, R., and Shim, K. (1999). SPIRIT: Sequential pattern

mining with regular expression constraints. In Proc. of the Intl. Conf. on very large data bases, pages

223–234.

[Han et al., 2007] Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining: Current status

and future directions. Data Mining and Knowledge Discovery, 15(1):55–86.

[Han et al., 1999] Han, J., Yin, Y., and Dong, G. (1999). Efficient mining of partial periodic patterns in

time series database. In Proc. of the 15th Intl. Conf. on Data Engineering, pages 106–115, Los Alamitos,

CA. IEEE Computer Society.

[Huang and Chang, 2005] Huang, K.-Y. and Chang, C.-H. (2005). SMCA: A general model for mining

asynchronous periodic patterns in temporal databases. IEEE Transactions on Knowledge and Data En-

gineering, 17(6):774–785.

[Inokuchi et al., 2000] Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based algorithm for

mining frequent substructures from graph data. In Proc. of the 4th European Conf. on Principles of Data

Mining and Knowledge Discovery, pages 13–23.

[Juang et al., 2002] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D. I. (2002).

Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet.

ACM SIGPLAN Notices, 37(10):96–107.

[Kuramochi and Karypis, 2001] Kuramochi, M. and Karypis, G. (2001). Frequent subgraph discovery. In

Proc. of the 2001 IEEE Intl. Conf. on Data Mining, pages 313–320.

[Lahiri and Berger-Wolf, 2010] Lahiri, M. and Berger-Wolf, T. (2010). Periodic subgraph mining in dynamic

networks. Knowledge and Information Systems, 24(3):467–497.

[Lahiri and Berger-Wolf, 2007] Lahiri, M. and Berger-Wolf, T. Y. (2007). Structure prediction in temporal

networks using frequent subgraphs. In Proc. of IEEE Symposium on Computational Intelligence and Data

Mining, pages 35–42.

[Lahiri and Berger-Wolf, 2008] Lahiri, M. and Berger-Wolf, T. Y. (2008). Mining periodic behavior in dy-

namic social networks. In Proc. of the IEEE Intl. Conf. on Data Mining, pages 373–382.

[Ma and Hellerstein, 2001] Ma, S. and Hellerstein, J. L. (2001). Mining partially periodic event patterns

with unknown periods. In Proc. of the 17th Intl. Conf. on Data Engineering, pages 205–214, Washington,

DC, USA. IEEE Computer Society.

34

[Nanavati et al., 2006] Nanavati, A. A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukher-

jea, S., and Joshi, A. (2006). On the structural properties of massive telecom call graphs: findings and

implications. In Proc. of the 15th ACM Intl. Conf. on Information and knowledge management, pages

435–444, New York, NY, USA. ACM.

[Özden et al., 1998] Özden, B., Ramaswamy, S., and Silberschatz, A. (1998). Cyclic association rules. In

Proc. of the Fourteenth Intl. Conf. on Data Engineering, pages 412–421, Washington, DC, USA. IEEE

Computer Society.

[Pasquier et al., 1999] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Efficient mining of

association rules using closed itemset lattices. Information Systems, 24(1):25–46.

[Pei and Han, 2000] Pei, J. and Han, J. (2000). Can we push more constraints into frequent pattern mining?

In Proc. of the sixth ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages 350–354.

ACM New York, NY, USA.

[Pei et al., 2002] Pei, J., Han, J., and Wang, W. (2002). Mining sequential patterns with constraints in large

databases. In Proc. of the eleventh Intl. Conf. on Information and knowledge management, pages 18–25.

ACM New York, NY, USA.

[Sun et al., 2006] Sun, J., Tao, D., and Faloutsos, C. (2006). Beyond streams and graphs: dynamic tensor

analysis. In Proc. of the 12th ACM SIGKDD intl. conf. on Knowledge discovery and data mining, pages

374–383. ACM.

[Sundaresan et al., 2007] Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., and Rubenstein, D. I. (2007).

Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra

and onager. Oecologia, 151(1):140–149.

[Tatti, 2008] Tatti, N. (2008). Maximum entropy based significance of itemsets. Knowledge and Information

Systems, 17(1):57–77.

[Yan et al., 2008] Yan, X., Cheng, H., Han, J., and Yu, P. S. (2008). Mining significant graph patterns by

leap search. In SIGMOD ’08: Proc. of the 2008 ACM SIGMOD Intl. Conf. on Management of data, pages

433–444, New York, NY, USA. ACM.

[Yang, 2004] Yang, G. (2004). The complexity of mining maximal frequent itemsets and maximal frequent

patterns. In Proc. of the tenth ACM SIGKDD Intl. Conf. on knowledge discovery and data mining, pages

344–353, New York, NY. ACM.

[Yang et al., 2001] Yang, J., Wang, W., and Yu, P. S. (2001). InfoMiner: mining surprising periodic patterns.

In Proc. of the 7th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages 395–400,

New York, NY. ACM.

[Yang et al., 2002] Yang, J., Wang, W., and Yu, P. S. (2002). InfoMiner+: Mining partial periodic patterns

with gap penalties. In Proc. of the 2002 IEEE Intl. Conf. on Data Mining, page 725, Washington, DC.

IEEE Computer Society.

35

[Yang et al., 2003] Yang, J., Wang, W., and Yu, P. S. (2003). Mining asynchronous periodic patterns in

time series data. IEEE Transactions on Knowledge and Data Engineering, 15(3):613–628.

[Zhu et al., 2007] Zhu, F., Yan, X., Han, J., and Yu, P. S. (2007). gPrune: a constraint pushing framework

for graph pattern mining. Lecture Notes in Computer Science, 4426:388.

36

