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Abstract

In a typical realistic scenario, there exist some past data
about the structure of the network which are analyzed with
respect to some possibly future spreading process, such as
behavior, opinion, disease, or computer malware. How sen-
sitive are the predictions made about spread and spreaders
to the changes in the structure of the network? We investi-
gate the answer to this question by considering seven real-
world networks that have an explicit timeline and span a
range of social interactions, from celebrity sightings to an-
imal movement. For each dataset, we examine the results
of the spread analysis with respect to the changes that oc-
cur in the network as the time unfolds as well as introduced
random perturbations. We show that neither the estimates
of the extent of spread for each individual nor the set of the
top spreaders are robust to structural changes. Thus, anal-
ysis performed on historic data may not be relevant by the
time it is acted upon.

1. Introduction

Prediction of the course and extent of processes spread-
ing in social networks and identification of the top spreading
individuals have become important issues in many contexts,
from epidemiology to viral marketing. In a typical realistic
scenario, there exists some past data about the structure of
the network which is analyzed with respect to the future
spread of some process, such as behavior, opinion, disease,
or computer malware. The important tasks are (1) estimat-

ing the possible number of affected individuals once the
process starts, (2) predicting who those individuals may be,
(3) identifying the most effective spread initiators, and (4)
identifying individuals that can effectively block the spread
of the process. However, by the time the outcomes of such
analysis are acted upon, such as by selecting marketing tar-
gets or vaccination candidates, time has elapsed and the net-
work structure may have changed significantly from what
was used for the initial analysis. The effectiveness of the
marketing scheme [23] or epidemiological response may be
sabotaged if analysis results are sensitive to such structural
changes.

In this paper, we focus mainly on the tasks of estimating
the extent of spread and identifying the top spreaders. These
are the individuals that, when used as the start of a spread,
affect the largest proportion of the population. We ask how
sensitive the predictions made about spread and spreaders
are to changes in the structure of the network. To answer
this overall question, we formulate three specific questions:

1. How much does the relative spreading ability of in-
dividuals change? Most algorithms for estimating the
extent of spread and for identifying the top spreaders
fundamentally rely on estimates of the spreading abil-
ity of each individual. Thus, it is important to know
how reliable those estimates are both in terms of actual
numbers and in the ranking they impose on individu-
als.

2. How much does the identity of the top spreaders
change? While the first question asks whether our pre-
dictions hold for all the individuals in the population,



this question focuses only on the top spreaders. The
set of top spreaders may be more or less robust than
the rest of the individuals, yet it is typically more crit-
ical to the impeding action.

3. How does the spreading ability of the top spreaders
from the past compare with that of the top spread-
ers after the change? While the identity of the top
spreaders may change as the network changes, the pre-
vious set of top spreaders may still perform well. Al-
though it may not be the best set of top spreaders in the
new network, we ask whether it is good enough.

We investigate the answers to these questions by consid-
ering seven real-world networks (Section 5) that have an ex-
plicit timeline and span a range of social interactions, from
celebrity sightings to animal movement. For each dataset,
we examine the results of the spread analysis with respect
to the changes that occur in the network as time unfolds, as
well as introduced random perturbations (Section 4). We
show that neither the estimates of the extent of spread for
each individual nor the set of the top spreaders are robust
to structural changes (Section 6). Thus, analyses performed
on historic data may not be relevant by the time they they
are acted upon if the network changes substantially in the
meantime.

2 Related Work

Many phenomena such as diseases, opinions, informa-
tion, fads, and behavior have been modeled as diffusion pro-
cesses in a social network, and have been studied in a num-
ber of domains including epidemiology [2, 9, 12, 16, 19, 29,
31, 32], diffusion of technological innovations and adop-
tion of new products [5, 6, 10, 15, 22, 24], phenomena such
as voting, strikes, rumors [17, 28, 36] and numerous others.
Several previous results have also addressed the problem of
identifying influential individuals affecting the spread of a
phenomenon in a network [3, 4, 10, 12, 19, 22, 25].

The problem of identifying the set of top k spread-
ers in social networks has been shown to be NP-complete
under various formulations [4, 18, 22] but allows a simple
greedy (1 − 1/e)-approximation. Later results by Mos-
sel and Roch [30] show that the general case of influence
maximization is NP-hard with the approximation guarantee
(1−1/e−ε). The algorithms for picking the k-best spread-
ers in a network rely on first approximating the spreading
ability of each individual, usually through stochastic simu-
lations. For large networks, this can be very computation-
ally intensive. Furthermore, strong inapproximability re-
sults for several other variants of influence maximization in
social networks have been shown by Chen [7].

Several recent studies explore various network properties
as proxies for the spreading ability of a node e.g. [21, 27]),

yet those results are not generally conclusive. For all these
approaches, the sample data used for analysis does not take
into consideration possible future network changes. In the
next section we formalize the distinction between networks
that change in time (dynamic networks) and their aggregate
or static view (Section 3.1). We also state the mathematical
models of spread in networks in Section 3.2.

3 Definitions

3.1 Static and Dynamic Networks

A social network is defined as a graph G = (V, E) where
the nodes V correspond to a set of unique individuals and
the edges E ⊆ V ×V represent interactions or relationships
between these individuals. We differentiate between two
types of social networks – those that change and evolve over
time, and those that are inherently unchanging. Examples of
the former include human contact networks, as the patterns
of interaction between people are likely to change over the
time. The top-level Internet router topology is an example
of a network that does not change, or changes very little
with time.

For those networks that do vary with time, a dynamic
network is a convenient representation for explicitly mod-
eling temporal changes. While conventional methodology
involves observing interactions for a period of time and rep-
resenting them as a single graph, a dynamic network is a
time-series of graphs where each graph represents interac-
tions over a small time period.

Definition 1. A dynamic network is a time-series of labeled
graphs G = 〈G1, ..., GT 〉, where Gt = (Vt, Et) is the graph
of interactions taking place at timestep t. Vt ⊆ V is the set
of individuals observed at timestep t, and an edge (v1, v2)
exists in Et if v1 and v2 were observed interacting in that
time period.

The question of how much actual time should be quan-
tized into a ‘timestep’ is beyond the focus of this paper.
However, we note that many types of social systems have
natural time quantizations such as hours or days. Figure 1
shows a dynamic network of interactions between four in-
dividuals.

One can aggregate a range of timesteps in a dynamic net-
work into a single static graph, or an aggregate network.
This is done by accumulating vertices and edges present in
a given range of timesteps. Note that aggregating the entire
range of timesteps results in a traditional social network,
i.e. a single graph of interactions without any temporal in-
formation.

Definition 2. Given a dynamic networkG, we build a static,
or an aggregate network G[i,j] from a range [i, j] timesteps



of G by accumulating vertices and edges in that range:

V (G[i,j]) =
⋃

i≤t≤j

Vt E(G[i,j]) =
⋃

i≤t≤j

Et

If i = 1 and j = T , then the resultant aggregate network
G[1,T ] is equivalent to the traditional social network G.

Figure 1. A dynamic network (top), an aggre-
gated network (bottom left), a traditional so-
cial network (bottom right).

In traditional approaches, network analysis is performed
on the aggregate network rather than the original explic-
itly dynamic network. One might immediately recognize
a problem here: paths in an aggregate network might not
correspond to valid propagation paths in the original dy-
namic network. Since the propagation of a rumor or virus
must proceed along a sequence of edges that are increasing
in time, and since an aggregate network has no temporal
information, modeling the spread of a process without con-
sidering time can lead to grossly inaccurate results [18].

3.2 Network Diffusion

A process spreading in a network can be described for-
mally using many models of transmission. For this paper
we use a model that has been extensively studied in the
context of social networks and viral marketing, the Linear
Threshold model [17]. While our analysis and conclusions
are applicable to a related simpler Independent Cascade
model [9, 10, 26, 31, 32], more commonly used in epidemi-
ology, we omit it in this paper for focus and brevity.

Models of collective behavior are developed for situa-
tions where individuals choose between alternatives based
on how many other individuals connected to them choose
those alternatives. The key concept is that of a “thresh-
old” which is the cumulative number of neighbors of an
individual that must make a decision before the individual
does so [17]. Such models are most appropriate for product
adoption or behavior propagation.

The Linear Threshold diffusion model describes the
spread over two sets of individuals, active and inactive.
Each inactive individual has a certain susceptibility to be-
come active, which is denoted by the individual’s threshold.

Each active individual has a certain weight of influence over
each of its inactive neighbors. An individual becomes active
if the accumulated weight of all its active neighbors become
larger than the individual’s susceptibility threshold.

More formally, the linear threshold model is defined by
two parameters. For each individual v, a threshold θv ≤ 1
indicates the latent tendency of this individual to be acti-
vated. For each edge (u, v) ∈ E the weight bu,v is the
influence of the individual u on v, that is, u’s ability to acti-
vate v. For each v,

∑
bu,v ≤ 1. In a dynamic network, the

weight but,vt may be time-dependent.
The spreading process described by linear threshold

model starts with a given set of thresholds θv assigned
to each individual. The initial set of active individuals is
A0. The process unfolds in discrete timesteps. In a dy-
namic network, we assume for simplicity that the timesteps
are synchronized with the timesteps of the network itself,
1 . . . T . At each step t, each inactive individual v is influ-
enced by the set of its active neighbors. The inactive indi-
vidual v becomes active at timestep t + 1 if

∑
bu,v ≥ θv .

If
∑

bu,v < θv then v remains inactive and at every sub-
sequent timestep, a new attempt is made to activate it by
the set of its neighbors active at time t + i. Each attempt
is independent of any previously made attempts. The out-
comes of the process is the set of individuals Af active after
T timesteps or until no more activations are possible, and
the size of that set, |Af |. We denote by σ(A0) = Af the
correspondence between the initial set A0 and the resulting
set of active individuals Af . We call this process static lin-
ear threshold spread when it unfolds over an aggregate, or
static, network.

The spreading process in the dynamic network graph is
different from the aggregate network, where each active in-
dividual attempts to activate each of its inactive neighbors
whenever it interacts with the inactive neighbor. We con-
sider two variants of linear threshold model for dynamic
networks, memoryless and with memory. In the memory-
less model an individual v becomes active at time t + 1 if
the total weight of its active neighbors at time t exceeds its
threshold:

∑
but,vt ≥ θv . This variant models the pro-

cess of adoption of impulsive behavior, influenced by peers
present at the moment. In the linear threshold model with
memory an individual v becomes active at time t + 1 if the
total cumulative weight of its active neighbors up until time
t exceeds its threshold:

∑t
i=0 bui,vi ≥ θv .

4 Methodology

To answer the three questions posed in Section 1, we re-
call a typical scenario for network analysis: the network is
observed for some time, then is analyzed as one aggregated
social network. The results of the analysis are then deployed
in the network, which has changed in the meantime. In or-



der to determine the effect of the changes on the results of
the historical analysis, we use the following overall experi-
mental template:

1. Consider (part of) the dynamic network as an aggre-
gate “historical data” network Gh.

2. Perform analysis on Gh: estimate the spreading ability
of each individual and identify the top spreaders.

3. Extract the changed network Gf . We do this in two
ways, both by considering the actual future segment of
the network and by randomly perturbing the network
to introduce changes.

4. Perform analysis on Gf : estimate the spreading ability
of each individual and identify the top spreaders. Com-
pare the results of the analysis on Gh with the results
on Gf . This will answer questions 1 and 2: how much
does the relative spreading ability of each individual
and the identify of the top spreaders changes.

5. Recall that the third question was how well do the top
spreaders from the past perform in the future relative
to the best spreaders of the future. To answer this ques-
tion, we simulate the spread in Gf (changed network)
starting both from the top spreaders of Gf and the top
spreader of Gh and compare their performance.

As we have pointed out, there are at least two ways to
consider the changes that may happen in the structure of the
network as the network evolves with time. First, we may
look at the actual dynamic network and aggregate a por-
tion of it into an initial “historical” segment used for analy-
sis. Subsequent segments are designated “future” data and
used to validate the results of the analysis. The changes in
the structure of the network then are the actual changes that
are recorded in the data. This is the approach of temporal
cross-validation, which is an adaptation of the well-known
statistical technique.

Temporal cross-validation involves dividing the timeline
of the dynamic network into several segments and aggre-
gating each segment into a single graph. Any analysis tech-
nique performed on the graph of one segment should then
produce similar results in another segment, given that it is
the same underlying network (and presumably the same dy-
namics) being modeled. If this is not the case, then we can
conclude that either the analysis technique is not robust, or
that the underlying dynamics of the network are changing.
In either case, the particular analysis technique is then un-
likely to produce actionable results. For this study, for tem-
poral cross-validation we divide each dynamic network into
five segments of equal duration.

While the temporal cross-validation approach examines
the robustness of the analysis with respect to actual recorded

network changes, these changes may not be representative
of the changes that may, in principle, happen in the net-
work. Thus, for the second way to introduce changes into
the structure of the network, we take the aggregate network
and randomly remove and add edges to introduce possible
perturbations and provide the answer to the expected robust-
ness of the analysis.

4.1. Experimental Setup

We initiate the experiments with the “historical” data
network Gh. This is the aggregate network of either a seg-
ment of or the entire dynamic network. That is, Gh =
(Vh, Eh), where Vh are the nodes present in timesteps i ≤
t ≤ j, Eh =

⋃j
t=i Et. Here i and j are either the first and

the last timestep of a particular network segment or i = 0
and j = T .

We define an objective function for each vertex v, de-
noted spread(v), which is the proportion of the popula-
tion that v eventually activates if it starts as the only active
node in the network. This is determined, as in earlier ap-
proaches [22], by Monte Carlo simulations. We simulate
the linear threshold spreading process on the network start-
ing with v as the only active node, for each node v ∈ V .
The threshold values Θv are chosen randomly for each iter-
ation, and all three variants of the linear threshold spreading
process are simulated – aggregate spread on Gh, and dy-
namic spread with and without memory on the underlying
dynamic network 〈Gi, ..., Gj〉.

In all cases, we simulate the spreading process for j −
i + 1 timesteps. We used 500 iterations of each spread
simulation, which was sufficient to produce consistent re-
sults. After simulating the spread from each individual, in
each iteration, we note the number of activated individuals
σ(v) = |Af |. The overall spreading capacity of v is then
the average over all iterations of the size of the active set
proportionally to Vh: spread(v) = 1

500

∑
σ(v)/|Vh|.

We then rank the individuals in the order of their
spreading ability: spread(v1) ≥ spread(v2) ≥ . . . ≥
spread(v|vh|). We call the first k individuals in this order
the “top k spreaders”. While as a set, this may not be the
best set of k individuals from which to start a spreading
process, individually they are the top k performers. We in-
vestigate whether they remain in the top k as the network
changes.

As mentioned earlier, we obtain the changed network
of “future” data Gf in two ways. In the temporal cross-
validation setting this is one of the segments that follows
the segment of Gh. That is, Gf = (Vf , Ef ) is the aggre-
gate network of a latter segment. For random perturbations,
we remove a fraction p of existing edges uniformly at ran-
dom and add the same number of edges that were not in the
network, preserving the overall number of edges. We use



the range of p = {0.05, 0.1, 0.3}, that is, changing 5, 10
and 30 percent of the edges. Note, that if the density of a
network is d, one cannot change more than 1−d fraction of
the edges in this scheme.

To answer the first question about the change in the rel-
ative spreading ability of individuals, we measure the cor-
relation between the orderings imposed on the individuals
by their spreading ability. That is, given the ordering im-
posed by spread(v) function in Gh and Gf , we measure
the difference in the orderings using Spearman’s rank cor-
relation coefficient [34]. For the second question, we mea-
sure the difference in the identity of the top k spreaders for
k = {5, 10} by measuring the Jaccard similarity [20] of
those sets in networks Gh and Gf .

Finally, we answer the last question by taking the top k
spreaders from Gh and using them as the set of initially ac-
tive individuals in Gf . We denote the average proportion of
activated individuals as APX . We compare that number to
the same process repeated with the initial set being the top k
spreaders from Gf itself. We denote the average proportion
of activated individuals in the latter case by OPT . We then
measure the performance of the historical top spreaders in
the changed network as the fraction APX/OPT .

We perform our analysis across different datasets repre-
senting a wide range of types of interactions. A summary of
results obtained from our analysis is presented in Section 6.

5 Datasets

For our experiments, we used real dynamic networks
spanning the range of interactions from animal behavior to
celebrity sightings.

5.1. Animal Social Networks

Grevy’s Zebra. The Grevy’s dataset consists of social
interactions among Grevy’s zebra (Equus grevyi)
recorded by biologists over the period of June through
August of 2002 in the Laikipia region of Kenya
[35]. Predetermined census loops were driven approxi-
mately twice per week and individual zebra were iden-
tified by unique stripe patterns. Upon a sighting, the
zebra’s GPS location was taken. In the resulting dy-
namic network, each node represents an individual ze-
bra and two animals are interacting (i.e. an edge exists
between the nodes) if their GPS locations are in close
proximity. The dataset consists of 28 zebra.

Plains Zebra. Plains zebra (Equus burchelli) are another
species of zebra. The data were collected in a similar
fashion to that of the Grevy’s dataset. The data were
collected through visual scans (approximately once per
day) over a period of several months [13]. Each entity

is a Plains zebra and the interactions represent spatial
proximity as determined by ecologists based on GPS
locations. It should be noted that this similarity be-
tween the Plains Zebra dataset and the Grevy’s Zebra
dataset should not be taken to mean that the social in-
teraction patterns will also be the same. There is ev-
idence to indicate that different species of zebra can
exhibit very different interaction patterns [35]. The
Plains-1 dataset represents data from observations of
282 individuals from 12th July 2003 to 19th Septem-
ber 2006. The Plains-2 dataset represents observations
of a different population of 313 individuals from 5th
January 2004 to 3rd July 2007.

5.2. Mobile P2P

A number of different datasets of human and group inter-
actions recorded through wireless hand-held devices have
been made available. We use two such datasets in this ex-
periment.

MIT Reality Mining. The MIT Reality Mining dataset
consists of social interactions among 100 students and
faculty over a nine month period at Massachusetts In-
stitute of Technology [11]. Interactions were inferred
from recorded Bluetooth connections between Nokia
6600 smartphones distributed to the participants. Our
processed dynamic network consists of 96 vertices.
The quantization was chosen as 4 hours [8].

Haggle Infocomm. The Haggle Infocomm dataset consists
of social interactions among attendees at an IEEE In-
focomm conference in the Grand Hyatt Miami [33].
There were 41 participants and the duration of the con-
ference was 4 days. The time quantization period was
10 minutes.

5.3. Enron Email Network

The Enron e-mail corpus is a publicly available database
of e-mails sent by and to employees of the now defunct
Enron corporation [1]. The corpus was made available in
2003 by the Federal Energy Regulatory Commission dur-
ing their investigation of the company. We use a cleaner
version of the original dataset with fewer integrity issues1.
Timestamps, senders and lists of recipients were extracted
from message headers for each e-mail on file. We chose a
day as the quantization timestep, with a directed interaction
present if at least one e-mail was sent between two individ-
uals on a particular day.

1Available at http://www.cs.cmu.edu/∼enron/



5.4. IMDB Photo Network

The Internet Movie Database (IMDB)2 maintains a large
archive of tagged and dated photographs of individuals as-
sociated with the production of commercial entertainment,
including actors, directors and musicians. One might rea-
sonably assert that people tagged on a popular online movie
information repository are ‘recognizable’ to the general
public, and that a degree of social association exists be-
tween people photographed together. Thus, similar to the
methodology of the Plains Zebra sightings, we collected
metadata on 45,477 photos with two or more people, which
collectively represents a partial structure of the social net-
work of people associated with the entertainment industry.
The quantization period was one day.

Table 1 summarizes the basic statistics of the datasets.

Dataset Vertices Timesteps Density
Grevy’s 28 44 0.304
Plains-1 282 1166 0.788471
Plains-2 313 1,276 0.654358
Reality Mining 100 2,940 0.681579
Haggle 41 576 0.967073
Enron 82,614 2,588 0.000465963
IMDB 15,011 13,967 0.00042449

Table 1. Dataset characteristics. Density is
the edge density of the aggregate network

6 Results

We now describe the results of the experiments and anal-
ysis that address each of the three questions, in turn, posed
in Section 1. In all the figures, the datasets are shown in the
order of increasing network density.

6.1 The change in the relative spreading
ability of individuals

Recall that to answer the question of how valid the pre-
dictions about the spreading capacity of each individual in
the network are as the network changes over time, we com-
pare the rankings of the individual’s spreading capacity.
We calculated the Spearman correlation coefficient between
those rankings in the original and changed networks. Fig-
ure 2 shows the correlations of the ranking by static linear
threshold spread in the aggregate network of a given seg-
ment versus the rankings by the static and the two dynamic
linear threshold spread within the same and all future seg-
ments of a dynamic network. For example, the bottom row

2http://www.imdb.com

of the plots shows the static spread ranking in the first seg-
ment versus all the rankings in each of the five segments,
while the top row shows the ranking of the fourth segment
versus the rankings of the fourth and fifth segments. As
expected, the only perfect correlation is between the static
spread ranking with itself within the same segment. What
is unexpected, however, is how little correlation there exists
between the dynamic and the static spread models and how
quickly the correlation deteriorates as time unfolds.

To measure how much the network actually changes with
time, we calculated the distance between the aggregate net-
works of every two segments. We measure this distance as
the complement of the Jaccard similarity of the edge sets
of the two networks. Figure 3 shows the scatter plot of
the distance between segment networks versus the Spear-
man correlation coefficient between the spread rankings of
the individuals in the two networks. The surprising feature
of the plots is how little correspondence there is between
the network similarity and the consistency of the rankings.
Moreover, note that in most datasets the distance between
any two segments is at least .4 and often reaches .8, which
means networks typically change very fast with time.

The result of random perturbations of the edges in net-
works are shown in Figure 4. Here we only compare the
rankings of the static linear threshold spread on the aggre-
gate networks before and after the perturbation. We do
not consider the dynamic spread models since the perturba-
tions are not explicitly dynamic and we do not control the
timesteps in which the random edges are perturbed. These
results also show that the quality of the predictions of the
spreading capacity of the individuals deteriorates rapidly
with the increase in the amount of perturbation.

6.2 The change in the identity of the top
spreaders

The second question we asked was whether, despite the
fact that overall the relative predictions about the spreading
capacity of individuals may not be robust, the identities of
the top spreaders remain relatively constant. We compare
the sets of the top five and top ten ranked individuals in the
network before and after the spread. We measure the Jac-
card similarity of the sets of the top spreaders. Figure 5
shows the similarity of the sets of the top five spreaders be-
tween the first segment and all subsequent segments. We
omit the comparison between all other pairs of segments
for brevity, but note that they show a similar trend. As the
results show, the identity of the top five spreaders changes
drastically as time unfolds. Figure 6 shows the scatter plot
of the similarity between the top five sets versus the amount
of change in the network. The results for the top ten ranked
individuals are similar and we omit them due to space con-
straints.



Figure 2. Spearman’s correlation coefficient comparing the ranking of individuals (by estimated
spreading capacity) across different segments. Comparisons are made both within the same seg-
ment and between current and future segments. Results for three different spread models are
shown.

Even in the identity of the top ranked individuals there
is little correspondence between the amount of change in
the network and the consistency of the results. Recall that
the datasets are ordered by their density. There is a possible
trend that in sparser networks the top ranked individuals re-
main more consistently in the top, but before we draw any
conclusions, this trend must be investigated further. Fig-
ure 4 shows the similarity of the top spreaders for the ran-
domly perturbed networks. Even at 5% perturbation these
sets are almost entirely different. Thus, for example, even
small changes in the network may invalidate the predictions
about the potentially good marketing targets.

6.3 The relative performance of the his-
torical spreaders

Finally, despite the fact that, as we saw, the identity of the
top spreaders may have changed, we asked whether the old
top spreaders would still “perform” sufficiently well in the
new, changed network. That is, if the top spreaders from the
original network are used to initiate the spread in the new,
changed network, how would the number of individuals af-
fected by this spread compare to the extent of spread initi-
ated by the new set of the top spreaders in the new network?
The answer to this question directly implies the answer to
whether the actions based on past predictions are valid as

the network changes and lead to sufficiently good results.

Figure 7 shows the relative performance of the top five
ranked individuals in segment 1 compared to the top five
individuals in each subsequent segment. The results for
other segments and the top ten individuals are similar and
we omit them due to space constraints. Despite the fact that
the identity of the top individuals changes, we see that the
old top spreaders perform as well as the new top spread-
ers in many cases. However, this is true only for the net-
works where spread saturation is easily achieved and spread
initiated from almost any set of individuals reaches every-
body in the population. In sparser networks like IMDB and
Enron, the performance of the old top spreaders deterio-
rates with time. Figure 8 shows the relationship between
the performance of the top ranked sets and the amount of
change between the old and the new networks which, again,
demonstrates that there is little correspondence between the
amount of perturbation and the performance of the top indi-
viduals.

Surprisingly, on randomly perturbed networks, the origi-
nal top 5 set of individuals performed always nearly as well
as the top set from the perturbed network. This is despite the
fact that the sets themselves have few individuals in com-
mon. Thus, random perturbations may not be representa-
tive of changes in real networks and it is, then, particularly
important to distinguish true patterns of network evolution
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and noise.

7 Conclusions and Future Work

Most social network analysis is performed on histori-
cal and typically aggregate data, and the possible structural
changes that happen as the network evolves are not taken
into consideration. Thus, by the time the analysis is com-
pleted and acted upon, its results may not be valid if the
network indeed has changed in the meantime. In this pa-
per, we asked how much such changes can affect the results
of network analysis in the context of diffusion in networks.
Specifically, we asked three questions: (1) whether the pre-
dictions about the relative spreading capacity of each indi-
vidual are robust; (2) whether the sets of the top spreaders
are relatively unaffected; and (3) whether the performance
of the top spreaders in terms of the extent of spread they
may cause remains good enough even after the changes. In
the process of answering these questions, we also compared
the predictions made on an the traditional aggregate, static
representation of a network to the explicitly dynamic view
of social interactions.

We found that in real dynamic networks the predictions
about the relative spreading capacity of individuals and the
identity of the top spreaders are sensitive even to minimal
changes in the network. Moreover, we found that networks
change significantly with time, often by as much as 40% of
edges in a short time period. Surprisingly, we also found
that there is little correspondence between the amount of
change in the network and the robustness of the predictions.
Finally, while in the real timeline, the performance of the
top spreaders from the past did not compare well with the
performance of the current top spreaders, in randomly per-
turbed networks past top spreaders typically did well even
after the perturbations.

Thus, overall, we found that not only do predictions from
the past not hold well into the future, these predictions do
not deteriorate gracefully either. This implies that we can-
not estimate the robustness of our predictions by measuring
the amount of structural change in the network. Moreover,
since random changes do not diminish the relative spreading
ability of the top spreaders as much as the changes with real
passage of time, we conclude that a few critical edges can
make a big difference. Thus, we need methods for identi-



Figure 5. Jaccard similarity comparing the top 5 individuals (ranked by spreading capacity) in seg-
ment 1 with the top 5 individuals in subsequent segments. The x-axis is the current segment to
which the top five set from segment 1 is being compared.
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Figure 6. Jaccard similarity between the sets of top 5 individuals (ranked by spreading capacity) as
a function of the dissimilarity between the underlying networks.

fying edges that are critical to the robustness of the predic-
tions. We must also develop analysis techniques that take
possible future network changes into consideration.

Finally, in almost all experiments, the analysis per-
formed in an aggregate network using a static diffusion
model had little correspondence to the explicitly dynamic
models of spreading processes simulated on dynamic net-
works. Thus, in explicitly dynamic networks we must use
analysis methods that explicitly take the dynamic nature of
interactions into consideration.
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