
Structure Prediction in Temporal Networks using

Frequent Subgraphs

Mayank Lahiri

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: mlahiri@cs.uic.edu

Tanya Y. Berger-Wolf

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: tanyabw@cs.uic.edu

Abstract— There are several types of processes which can be
modeled explicitly by recording the interactions between a set
of actors over time. In such applications, a common objective
is, given a series of observations, to predict exactly when certain
interactions will occur in the future. We propose a representation
for this type of temporal data and a generic, streaming, adaptive
algorithm to predict the pattern of interactions at any arbitrary
point in the future. We test our algorithm on predicting patterns
in e-mail logs, correlations between stock closing prices, and
social grouping in herds of Plains zebras. Our algorithm averages
over 85% accuracy in predicting a set of interactions at any
unseen timestep. To the best of our knowledge, this is the first
algorithm that predicts interactions at the finest possible time
grain.

I. INTRODUCTION

In many applications, a common objective is to model the

dynamic behavior of a process and to predict its state in the

future. Several types of processes are represented by a set of

entities interacting over a period of time. Examples which have

been studied extensively are the evolution of bibliographic

databases [1]–[5], the web and other information networks [6]–

[13], disease transmission paths in epidemiological simula-

tions [14]–[19], influence and information spread in a social

network [20]–[27] and the pattern of correlations between

stock prices [28], [29]. Temporal networks1 are a powerful

generic model for such processes [32]. A temporal network

consists of a sequence of graphs, each being a snapshot of

interactions at a particular instant or over a small time interval.

Vertices in each graph represent entities and edges between

them represent interactions, which can either be directed or

undirected (bi-directional). The flexibility of this definition

allows temporal networks to be used to model a variety of

processes while maintaining the explicit order and concurrency

of interactions.

There are many questions that can be posed for processes

represented as temporal networks. We focus on the task of

predicting the structure of the temporal network at each unseen

timestep by computing a model of the evolution of the process

under consideration. A closely related problem from the field

of network analysis is that of link prediction in a graph, which

aims to rank all possible edges (interactions) by the likelihood

1Similar representations are also known as dynamic networks [30], time-
series networks, and longitudinal data in social network analysis [31].

that they will occur at some point in the future [4]. Our work

extends that definition to temporal networks by predicting for

each timestep the structure of the graph which is not noise.

The predictions are based solely on prior observations. Unlike

the link prediction problem, we are concerned with the ability

to predict exactly when groups of interactions will occur, not

to predict the likelihood of every possible interaction occurring

at any point in the future.

In this paper, we present a generic, accurate, adaptive,

streaming algorithm for efficient structure prediction in tem-

poral networks. Our algorithm does not rely on any domain-

specific features. The data is assumed to be a stream of

graphs, and the algorithm adaptively learns a model for the

dynamics of the process. Our algorithm uses the idea that

certain interactions signal the occurrence of others at some

point in the future. By probabilistically measuring the delay

between interactions, one can predict exactly when certain

interactions are going to occur based on past and current

observations. However, directly using this approach requires

computing on pairs of edges and becomes intractable for

even medium-sized graphs. We propose the use of frequent

subgraphs in order to aid the tractability of the algorithm as

well as to filter out insignificant interactions.

We tested our algorithm on three diverse examples of real-

world processes, ranging from stock price correlations to

social groupings in animal populations. Our algorithm aver-

ages 85.7% accuracy when predictions are allowed a single

slack timestep. This is the first algorithm, to the best of our

knowledge, that predicts interactions between entities at the

finest possible time grain.

This paper is organized as follows. In the rest of this

section, we review relevant prior work from computer science

as well as other fields and list some preliminary definitions. In

Section II, we formally define the structure prediction problem

and describe our algorithm, as well as an equivalence between

temporal networks and the traditional transactional or ‘market

basket’ data that is common in data mining research. This

is followed by a discussion of the datasets and experimental

results in Section III. Finally, we end with conclusions and

future research directions in Section IV.

35

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

A. Related Work

From a theoretical point of view on the evolution of

networks, there have been several papers that characterize the

evolution of large, complex networks such as bibliographic

databases [1], [5], [33], [34] in terms of measures such as

changes in vertex degree distributions over time. Behavior

such as preferential attachment [34] and structural properties

like the ‘small-world’ effect [1] have been observed in several

real-world networks. Other evolving networks that have been

studied are the World Wide Web and a subset of it commonly

called ‘blogspace’. There is a large amount of literature dealing

with the various aspects of the evolution of the former [6], [9]

Kumar et al. [10] examine the evolution of blogspace using

time graphs, focusing specifically on community structure.

Snijders [31] proposes a sociological behavior model for

entities, coupled with Markov Chains in order to build models

of temporal dynamics in social networks. The models are

evaluated using statistical measures, but not empirically.

Most work in explicit link prediction has used static graphs

which aggregate temporal data in some way. The survey by

Getoor and Diehl [35] outlines some approaches to link mining

in general, and link prediction in particular. Similarly, Desikan

and Srivastava [7] outline a different three-tier approach to

mining temporal networks with an emphasis on temporal

networks generated from web usage logs. Liben-Nowell and

Kleinberg [4] test the accuracy of several structural measures

from social network analysis and web mining on ranking

potential future collaborations in a bibliographic database. Al-

though the relatively simple common neighbors indicator was

found to be about as effective as more advanced techniques,

the accuracy of link prediction on the aggregated test interval

was still quite low.

Given a single graph with a partially known link structure,

Popescul and Ungar [36] try to infer which edges are missing

from the graph. Test data is generated by removing links from

a bibliographic database, following which effective features

for classification are extracted by searching over the space

of database queries. This is similar to the problem of graph

inference, where a partial structure of a single graph is given

and the remaining structure has to be inferred based on

topological features alone. Vert and Yamanishi [37] describe

a supervised learning approach to this problem. Note that this

is a different line of research that aims to reconstruct partially

specified biological networks in biologically meaningful ways.

There have been few papers that explicitly use temporal

data. Kempe, Kleinberg and Kumar [38] define temporal

networks as static graphs where every edge is labeled with the

time that the interaction took place. They define the inference

problem on temporal networks as that of reconstructing time

labels for unlabeled edges, given a partial labeling of the graph.

O’Madadhain, Hutchins and Smyth [39] outline a method to

perform explicit temporal prediction of interactions. Domain-

dependent features are extracted from the temporal data,

following which a probabilistic classifier is used to predict

future interactions. However, their focus is on predicting future

interactions which have not occurred before, whereas our

method predicts when frequent groups of interactions will

occur at the finest possible time grain, given that they have

occurred at some point in the past.

Finally, our method also relies on results from the field of

frequent pattern mining. Recent advances in frequent graph

and itemset mining have resulted in efficient algorithms for

mining both maximal and closed frequent subgraphs from

a database of graphs [28], [40]–[42], as well as specialized

frequent structures like cliques [28]. Efficient algorithms have

also been proposed for mining frequent closed itemsets [43],

[44] from large datasets, which are used in our algorithm.

B. Definitions

In this section, we formally define temporal networks and

frequent subgraphs. We assume that a temporal network is

being used to model interactions amongst a set of uniquely

labeled entities.

Definition 1: A temporal network is a sequence of graphs

G = 〈G1, ..., GT 〉, where Gt = (Vt, Et) is the unweighted

graph of pairwise interactions at time t ∈ [1, T]. We let V =⋃

t

Vt be the universal set of entities.

Note that not all entities have to be present in all timesteps,

thus Vt ⊆ V for all t. Each entity v ∈ V is uniquely

labeled, and each v can appear only once at each timestep. This

restriction derives from the assumption that vertices represent

entities and timesteps are atomic. An entity present more than

once in a single timestep therefore invalidates our definition

of a temporal network. Furthermore, for any v ∈ Vt, if v is

not connected to any other vertex at a timestep t, then the

self-edge (v, v) ∈ Et is implied.

Definition 2: For any arbitrary graph G′ = (V ′, E′)
such that V ′ ⊆ V , we define the support set of G′ as

S(G′) = {t | G′ ⊆ Gt}, that is, the set of timesteps for

which G′ is a subgraph of Gt. The cardinality of the support

set, |S(G′)|, is called the support of G′ in G.

Definition 3: A graph G′ is frequent in G if |S(G′)| ≥
minsup × T , where 0 < minsup ≤ 1 is a fixed minimum

support threshold.

Since the vertices in each graph Gt are uniquely labeled and

appear only once per graph, determining whether an arbitrary

graph is a subgraph of another graph does not incur the

complexity of checking for graph isomorphism. This is in

contrast to most research in graph mining [40], [41], [45],

[46], where there is no restriction on the vertex labels of a

graph and, consequently, the need to check for isomorphism

among frequent subgraphs.

Definition 4: Let F be the set of all frequent subgraphs of

G given a particular minsup. A graph f ∈ F is maximal if

∀g ∈ F , f 6⊂ g. A graph f ∈ F is closed if ∀g ∈ F , such

that g 6= f , either f 6⊂ g or S(f) 6⊆ S(g).

II. PREDICTION IN TEMPORAL NETWORKS

We now formally define the structure prediction problem

for temporal networks and state our approach.

36

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

A. Problem Statement and Approach

We define the structure prediction problem for temporal net-

works as follows: given a temporal network G = 〈G1, ..., GT 〉,
predict a set of edges (interactions) for each Gt where t > T .

Our approach is based on the assumption that some inter-

actions are good predictors for others occurring in the future.

For example, an interaction x is a good predictor for y if y

commonly occurs a fixed number of timesteps after x. For each

ordered pair of interactions 〈x, y〉, where x, y ∈ E, we treat

the temporal interval between x and y as a random variable

Φ(x, y). Since the interval is temporal rather than a distance,

Φ(x, y) 6= Φ(y, x) if x 6= y. The former measures the interval

from an occurrence of x to an occurrence of y, and the latter

vice versa. Note that Φ(x, x) is valid and measures the delay

between two occurrences of a particular interaction.

The approximate distribution of each random variable can

be measured empirically and used to estimate the most likely

temporal delay for a given pair 〈x, y〉. We shall denote such

a delay as δx,y . Combining the timestep in which x was last

observed with the estimate for δx,y , we obtain the timestep

at which y is next expected to occur. The advantage of this

method is that it can easily be implemented as a streaming

algorithm, a requirement for most practical applications with

very large graphs.

A major drawback of this approach, however, is that con-

sidering all ordered pairs of interactions has O(|V |4T) time

complexity2. This complexity is unacceptable even for rela-

tively small graphs with |V | = 100 and T = 100. Moreover,

the computation of the distributions of Φ(x, y) over the whole

space of edge pairs would include those pairs which have no

real correlation and are possibly just noise.

We propose a modified version of this approach using

frequent subgraphs instead of individual edges. There are

two reasons for using frequent subgraphs to reduce the input

space. The first is that we aim to retain statistically significant

groups of interactions while reducing the number of edge pairs

for which delay distributions have to be calculated. Frequent

subgraphs can be used as heuristic approximations of groups of

statistically significant concurrent interactions, and algorithms

for their extraction are specifically designed to operate effi-

ciently on large databases. Furthermore, the number of closed

or maximal frequent subgraphs is typically asymptotically

smaller than the number of edges in a graph [40], [41].

Using frequent subgraphs, an ‘interaction’ is redefined to

be the occurrence of a frequent subgraph at a timestep. Thus,

for an ordered pair 〈x, y〉, x, y ∈ F instead of x, y ∈ E

as defined earlier. Instead of iterating over all pairs of edges

at each timestep, we now iterate over all pairs of frequent

subgraphs and the complexity of calculating the distributions

of all Φ(x, y) drops to O(|F|2T). The problem is therefore

redefined as one of predicting frequent subgraphs at each

timestep.

Finally, we combine the use of the estimated delay with

2There are O(|V |4) pairs of edges in an arbitrary graph and T possible
temporal delays.

an adaptive learning component to reduce the effect of noisy

predictions based on small-sample approximations of Φ(x, y).
The details of this part of the algorithm are discussed in

Sec. II-C.

B. Frequent Subgraphs

Since frequent subgraphs are being used to filter the data

stream, they have to be selected carefully so as not to discard

significant patterns of interaction. The obvious approach to

achieve this goal is to extract all frequent subgraphs from

a temporal network. However, according to the downward

closure property [47] applied to graph mining, every subgraph

of a frequent subgraph is also frequent. This often leads to a

massive number of frequent subgraphs, limiting the utility of

using frequent subgraphs instead of edge pairs.

An alternative approach is to mine only maximal frequent

subgraphs [41]. No maximal frequent subgraph is a subgraph

of any other maximal frequent subgraph. Thus, if a small

part of a maximal frequent subgraph exists independently of

its parent, it is not considered and omitted from the data

stream. This approach can thus be overly restrictive because of

the emphasis on maximizing the structural size of subgraphs

instead of retaining common interactions.

A compromise between these two approaches is to use

frequent closed subgraphs [40], which are fewer than the total

number of frequent subgraphs, but not as structurally biased as

maximal frequent subgraphs. Fig. 1 illustrates the difference

between the three types of frequent subgraphs.

Finally, temporal networks with the constraints that we

have imposed in Sec I-B have an equivalence with the more

traditional transactional, or ‘market basket’, type of data used

in frequent itemset mining [47]. Market basket data consists

of a set of transactions where each transaction is a set of

items drawn from a universal set. In order to transform a

temporal network into a transactional database, for each graph

Gt ∈ G, each edge e ∈ Et can be uniquely represented as a

concatenation of the labels of its vertices. Singleton vertices

are represented by self-edges and will be included in frequent

subgraphs. With any mapping from the concatenated label to

the set of integers, each e ∈ Et becomes an ‘item’ and each

timestep becomes a transaction of items. In this way, tools

for mining frequent itemsets can be used to mine frequent

subgraphs in temporal networks. Itemset mining does not incur

the cost of checking for subgraph isomorphism that is required

to varying degrees in general graph mining algorithms, where

vertex labels do not have to be unique.

C. The Algorithm

Our algorithm consists of two main components: learning

the distributions of the random variables Φ(x, y) for pairs of

frequent subgraphs (steps 1 and 2 below) and an adaptive

prediction module (steps 3 and 4 below). Step 0 below is a

preprocessing step; the streaming prediction algorithm starts

from step 1.

37

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

A

B

C

D

A

B

C

D

A

B

C

D

t = 1 t = 2 t = 3

Maximal:

A

B

C

D Closed:

A

B

C

D

A

B D

Frequent:
A

B

B D

B

C

A

B D

B

C

D

A

B

C

A

B

C

D

Fig. 1. A temporal network with three timestep and various types of frequent
subgraphs at minimum support 2.

Step 0: Extract frequent closed subgraphs (preprocessing):

We assume that all or part of the network is given and is used

for extracting frequent subgraphs at a fixed minimum level

of support minsup. We use the itemsets correspondence and

MAFIA [44], a frequent itemsets algorithm, to achieve this

goal.

Step 1: Update the distribution for each Φ(x, y): The algo-

rithm maintains the timestep at which each frequent subgraph

was last seen. For a frequent subgraph x, let this value be

L(x), initially set to 0. For each timestep t, the graph Gt is

represented by a set of frequent subgraphs Ft = {f1, f2, ...}
rather than edges occurring in that timestep. When a new

timestep Gt ≃ Ft is read, for each pair of frequent subgraphs

x ∈ F and y ∈ Ft, the distribution of Φ(x, y) is updated with

t − L(x), the observed delay between x and y. That is, the

count for δx,y = t−L(x) is increased by one, and is only done

if L(x) 6= 0. This implicitly builds the distribution matrix D,

shown in Fig. 2. Finally, L(x) = t if x ∈ Ft.

Step 2: Update estimates of when each frequent subgraph

will occur next: The distributions of the variables Φ(x, y) are

used to estimate the temporal intervals δx,y between x and

y. We use the mode3 of the distribution, denoted Φ̂, as the

estimate. The distribution matrix D is reduced to an estimator

matrix ∆ that maintains the predicted delay from x to y. This

is done by reducing every entry in D with Φ̂(x, y):

δx,y = Φ̂(x, y)

In the case of a multimodal distribution, the mode of the

smallest delay is chosen.

Step 3: Assign reliability values to each delay estimate:

In order to suppress predictions which turn out unreliable,

the algorithm dynamically assigns a reliability value to the

elements of ∆. In addition to the mode δx,y = Φ̂(x, y), we

also have the size of the mode |Φ̂(x, y)|, i.e. the number of

3mode: most frequent value in a discrete distribution.

f1

f2
.
.
.
x

f1 f2 . . . y

0

2

4

6

8

10

Delay

C
o

u
n

t

F
^

dx, y

Fig. 2. The matrix D of distributions of Φ(x, y)

times that the interval δx,y has occurred in the data stream.

Whenever a prediction is made (detailed in step 4) using δx,y

we say that it is incorrect if the predicted frequent subgraph is

absent. We consider that as a negative example of δx,y being

an accurate estimate of the true interval. Let Φ(δx,y) be the

number of times that a prediction based on δx,y turned out to

be incorrect. The reliability value of δx,y is then defined as:

R(δx,y) =
|Φ̂(x, y)|

|Φ̂(x, y)| + Φ(δx,y)

Step 4: Make predictions for the next timestep: Given

the current timestep t, we make predictions for the frequent

subgraphs that will occur at timestep t+1. We predict an occur-

rence of y in Gt+1 if for some x ∈ F , L(x) + δx,y = t + 1
with a reliability above a fixed minimum threshold τ . We

compare the prediction against actual data if it is available.

We also consider a relaxed version by adding a slack

variable S. A prediction for a frequent subgraph y at time t

is considered correct if y is observed anywhere in the time

interval [t − S, t + S]. At S = 0, all predicted frequent

subgraphs have to occur exactly at the timestep at which they

are predicted.

III. EXPERIMENTAL RESULTS

In this section, we describe the implementation of our

algorithm and the datasets used to test its performance and

accuracy. Experimental results are presented in Sec. III-B,

followed by a discussion of the results.

A. Datasets

We use four real-world temporal networks to test the ac-

curacy of our prediction algorithm. The datasets range from

networks that are relatively sparse but with a large number

of vertices and timesteps, to more dense networks with fewer

vertices and timesteps. Each dataset is described below and

summarized in Table I. The number of timesteps listed is the

number of graphs in the temporal network. Unique interactions

represent a distinct instance of two individuals interacting, that

is, multiple instances of two individuals interacting are counted

once. The sums of all interactions over the whole network are

listed under total interactions.

38

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1) Enron e-mails: The Enron e-mail corpus is a publicly

available database of e-mails sent by and to employees of the

now defunct Enron corporation [48], [49]. The corpus was

made available in 2003 by the Federal Energy Regulatory

Commission during their investigation of the company. We use

a cleaner version of the original dataset with fewer integrity

issues [50]. Timestamps were extracted from message headers

for each day of e-mail activity. Entities are identified by their

e-mail address, and an interaction is said to occur if an e-

mail was sent between two entities on a given day. Only one

interaction per day is incurred even if multiple emails are

sent between any two entities. The direction of the email is

discarded in our experiments.

2) Plains zebras: Social interactions between Plains zebra

(Equus burchelli) in Kenya were recorded by direct observa-

tions made by behavioral ecologists from Princeton Univer-

sity [51]. The data is made from visual scans of the popula-

tions, typically once a day, over periods of several months.

Each entity is a zebra, uniquely identified by the pattern

of its stripes. Each spatially proximate group of animals, as

determined by GPS coordinates, represents a complete set of

interactions amongst those individuals.

3) Stock market: Correlations between closing prices of

stocks over a time period can be represented as a temporal net-

work. Using publicly available historical data for the New York

Stock Exchange (NYSE) ranging from 1988 to 2006 [52], we

obtained daily closing prices for 3,416 stocks. For every pair

of stocks (S1, S2), the correlation coefficient ρ is defined as

ρ =
cov(S1, S2)

σ1 × σ2

, where cov(S1, S2) is the covariance of the

daily closing prices of S1 and S2 over a sampling period and

σ1 and σ2 are the standard deviations of the stock prices in

the same period. For every successive sampling period, an

edge (S1, S2) exists if ρ(S1, S2) ≥ α, where α is a minimum

apriori chosen correlation value. This form of the stock graph

has been shown to have the scale-free property common to

many real-world social networks [29], as well as frequently

occurring patterns [28].

We use two versions of the stock graph, one with a sampling

period of 30 days and α = 0.9 (Stock Market 1) and

another with a sampling period of 5 days and α = 0.98
(Stock Market 2). Furthermore, starting from the most recent

quotes, we scan backwards and chose as entities a subset

of stocks that have been continuously traded throughout the

entire period. We thus obtain a set of aligned stock time series

of identical length. This removes what would otherwise have

been a bias in the frequent subgraphs toward patterns involving

stocks that have been traded for longer periods of time. The

fixed minimum number of stocks chosen are 1,000 (Stock

Market 1) and 2,500 (Stock Market 2).

B. Experiment Parameters and Results

We designed a series of experiments to evaluate the perfor-

mance of our algorithm and test its sensitivity to parameters.

The parameters for the streaming component of the algorithm

are τ , the minimum reliability required to make a prediction,

TABLE I

TEST DATASET CHARACTERISTICS.

Dataset Timesteps Entities Interactions

total unique

Enron 1,213 75,026 936,032 295,233

Plains Zebras 228 1,002 435,926 168,787

Stock Market 1 104 1,000 1,415,815 501,499

Stock Market 2 121 2,500 4,910,962 2,482,911

TABLE II

SUMMARY OF EXPERIMENTAL PARAMETERS.

Parameter Description Range

minsup Minimum support for mining [0, 1]

train size Number of initial timesteps to use for [2, T]

extracting frequent subgraphs

τ Minimum reliability for making a prediction [0, 1]

S Slack interval for validating predictions [0, T]

and S, the slack variable. However, the use of frequent

subgraphs introduces the parameters minsup, the minimum

support for mining frequent subgraphs, and train size, the

size of the initial network from which frequent subgraphs are

extracted.

Each dataset is first converted to a transactional itemset

representation using the transformation described in Section II-

B. Frequent closed subgraphs are then extracted from the

first train size timesteps using the MAFIA algorithm. The

(fractional) minsup value only applies to this initial portion

of the network, i.e. the absolute minimum support for any fre-

quent closed subgraph is minsup× train size. We decreased

minsup values from 1 until the number of frequent subgraphs

produced became too large, typically around supports of 1-3

timesteps. In general, note that at a minsup of 1 timestep,

every timestep is a frequent closed subgraph. Table II summa-

rizes the experimental parameters.

After mining frequent closed itemsets, our prediction al-

gorithm is run on the entire network. The inclusion of the

‘training’ timesteps does not bias the accuracy of the algorithm

because their purpose is to build a filter and not to learn

a model, which is done continuously. The algorithm is run

at a range of minsup, train size, S and τ values, with

the slack being varied in the range [0, 2]. The algorithm was

implemented in C and run on a dual-core Pentium D system

(32-bit) running at 3.2 GHz with 4 GB of RAM and Linux

kernel 2.6.12, and did not exceed a run time of 5 minutes in

any instance.

Fig. 3 shows the accuracy of the algorithm on each dataset

for different values of minsup and slack. The τ parameter for

these runs was fixed at 0.9 to filter out unreliable predictions.

The train size parameter was set to 20% of the total number

of timesteps for each dataset. The range of minsup was

chosen separately for each dataset based on the number of

39

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

timesteps and frequent subgraphs. At the highest minsup

for each dataset, there were only a few frequent subgraphs,

whereas the lowest minsup represents the largest number

of frequent subgraphs that were tractable on our machine,

typically ranging in the thousands. The average accuracy

across datasets at S = 1 was 85.7%.

In order to judge the contribution of the adaptive predic-

tion module to the overall accuracy (as opposed to just the

distributions of Φ(x, y)), we ran a series of experiments to

determine the effect of the τ parameter. Fig. 4 shows the effect

of increasing τ on average accuracy across all datasets. The

minsup used for each dataset was the middle of the ranges

given in Fig. 3.

Fig. 5 shows the effect of increasing the proportion of the

network from which frequent subgraphs are extracted. The

minsup used for each dataset is the same as that of Fig. 4.

The τ value was fixed at 0.9.

C. Discussion

The most prominent result of our experiments is that the

proposed network structure prediction algorithm is highly

accurate (with one slack time step). However, predicting

structure precisely at each timestep (S = 0) is a difficult

task. It is highly unlikely that real-world processes would have

completely and precisely predictable patterns of interaction,

an aspect which is exacerbated by an arbitrary quantization

into timesteps. The arbitrariness of timesteps is emphasized

by the dramatic improvement in accuracy when a single slack

timestep is allowed for structure prediction, and marginally

thereafter for larger slack intervals.

By increasing the slack value S, we increase the time

interval in which a prediction is considered accurate and thus

increase the probability that an arbitrary prediction is found

to be correct. As S increases to infinity, it is expected that

the accuracy increases towards 100%. However, as we have

mentioned, 100% accuracy is quite unlikely when the dataset

concerned is a real-world processes and would require the

algorithm to make correct predictions even with very small

samples for the distributions of Φ(x, y).

A trend in the results shown in Fig 3 is that accuracy

increases as the minimum support for frequent subgraph

mining is increased. This is partially caused by the number of

frequent subgraphs dropping as minsup is increased. Delays

between frequent subgraphs at a higher support seem to be

more predictable, as indicated by the increase in accuracy

with higher minsup values. The degree to which the accuracy

increases varies across datasets. For example, Stock Market

1 shows relatively little change until minsup is increased to

around 0.4 (about 10 timesteps, or 300 business days), whereas

the Enron dataset shows a smoother increase in accuracy.

Intuitively, this suggests that a small number of frequent

patterns of interaction are very predictable, whereas a larger

number of less frequent patterns are less predictable. The use

of frequent subgraphs thus seems to be effective as a filter for

statistically significant interactions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

Minimum prediction reliability (tau)

S = 0
S = 1

Fig. 4. Effect of varying minimum prediction reliability τ .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
a
c
c
u
ra

c
y
 (

%
)

% of timesteps used for frequent subgraph extraction

S = 0
S = 1

Fig. 5. Effect of varying size of training network.

The use of frequent subgraphs is only one possible method

to reduce the space of entities being considered for temporal

dependence. The tradeoff is that fewer frequent subgraphs

are likely to cover a smaller subset of individuals in the

population. Noting that our algorithm predicts the occurrence

of frequent subgraphs, this leads to predictions covering fewer

individuals overall. A simple way to relax this restriction is to

maintain a buffer of the most recent timesteps and continually

extract local, as opposed to global, frequent subgraphs. This,

and other approaches, will be addressed in future work.

The adaptive prediction module is instrumental for high ac-

curacies. Fig. 4 shows the effect of varying τ for representative

values of minsup and train size. At τ = 0, the adaptive

module is effectively switched off. Every possible prediction

that can be made is made at each timestep with no filtering

whatsoever. At τ = 1, only δx,y values which have never

proven to be wrong are used to make predictions. Naturally,

this makes the prediction more sensitive to noise, as illustrated

by the slight drop in accuracy at τ = 1 for S = 0. At a higher

slack value, predictions are less likely to be wrong with a

small amount of noise in the data and increasing τ improves

performance significantly.

Finally, efficiency is a major motivating factor in our design.

With large networks, and moreover, streaming network data

40

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.04 0.06 0.08 0.1 0.12 0.14

A
c
c
u

ra
c
y

Minimum Support for Frequent Pattern Mining (minsup)

S = 0
S = 1
S = 2

(a) Enron

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
c
c
u

ra
c
y

Minimum Support for Frequent Pattern Mining (minsup)

S = 0
S = 1
S = 2

(b) Plains zebra

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
u

ra
c
y

Minimum Support for Frequent Pattern Mining (minsup)

S = 0
S = 1
S = 2

(c) Stock Market - 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
c
c
u

ra
c
y

Minimum Support for Frequent Pattern Mining (minsup)

S = 0
S = 1
S = 2

(d) Stock Market - 2

Fig. 3. Accuracy at different levels of minimum mining support and slack.

becoming available, many theoretical approaches do not scale

well. Our work takes advantage of mature, mainstream data

mining algorithms which are specifically designed to handle

large datasets. Our method is best suited to streaming data and

applications that require real-time predictions.

IV. CONCLUSION AND FUTURE WORK

We have presented a generic, online algorithm for predicting

a partial structure of a temporal network. Our algorithm is

accurately able to predict the structure of a temporal network

at an arbitrary unseen timestep with a slack of one timestep.

It can work as an online, streaming algorithm by continually

updating its model of the underlying process, or be used to

predict the next occurrence of each interaction based on a

static learned model. It is thus suitable for applications with

streaming data where real-time predictions are required, as

well as for more analytical applications where the evolution

of a process needs to be modeled precisely. Although the noise

associated with precise predictions holds for all our datasets,

predictions made for a particular timestep, give or take a

timestep, allow us to model, with a high level of confidence,

when interactions will occur in a diverse range of domains.

We were able to accurately predict, within one timestep,

correlations in stock prices, e-mail activity in a corporation,

and social groupings in populations of Plains zebra, with the

resolution of a timestep varying from one day for the e-mail

domain to 30 days for a version of the stock market graph.

While the prediction of a partial structure of the network

at each timestep has many applications, there is also a lot

of scope for future work. Perhaps most importantly, in our

current approach, frequent subgraphs are extracted once from

a training network. This precludes the possibility of capturing

groups of interactions which become frequent at a later point.

What is needed is a dynamic filter for statistically significant

interactions. One possible solution is to use locally frequent

subgraphs, or subgraphs that have been frequent in the last t

timesteps. These could be dynamically extracted from the data

stream, possibly replacing older subgraphs.

There are other possible extensions and variations of the

algorithm specific to a given application domain. However, the

proposed algorithm provides an efficient and accurate basis for

those extensions.

ACKNOWLEDGMENTS

We would like to thank Dan Rubenstein, Ilya Fischhoff,

and Siva Sundaresan of the Department of Ecology and

Evolutionary Biology at Princeton University for sharing the

Plains Zebra data. Their work was supported by the NSF

grants CNS-025214 and IOB-9874523. We are grateful to the

anonymous reviewers for their constructive comments. This

work is supported by the Microsoft award 14936.

REFERENCES

[1] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,
and T. Vicsek, “Evolution of the social network of scientific
collaborations,” Physica A: Statistical Mechanics and its Applications,
vol. 311, no. 3-4, pp. 590–614, August 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0378-4371(02)00736-7

41

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

[2] K. Börner, J. Maru, and R. Goldstone, “The simultaneous evolution of
author and paper networks,” PNAS, vol. 101, no. Suppl 1, pp. 5266–
5273, 2004.

[3] K. Börner, L. DallAsta, W. Ke, and A. Vespignani, “Studying the emerg-
ing global brain: Analyzing and visualizing the impact of co-authorship
teams,” in Complexity, Special issue on Understanding Complex Systems,
2006, in press.

[4] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” Proceedings of the twelfth international conference on

Information and knowledge management, pp. 556–559, 2003.

[5] J. Ramasco, S. Dorogovtsev, and R. Pastor-Satorras, “Self-organization
of collaboration networks,” Physical Review E, vol. 70, no. 3, p. 36106,
2004.

[6] Z. Bar-Yossef, A. Broder, R. Kumar, and A. Tomkins, “Sic transit gloria
telae: Towards an understanding of the web’s decay,” in Proc. WWW ’04.

[7] P. Desikan and J. Srivastava, “Mining temporally evolving graphs.” New
York, NY, USA: ACM Press, 2004, pp. 13–22.

[8] J. Kleinberg, “Temporal dynamics of on-line information streams,” draft
chapter for the forthcoming book Data Stream Management: Processing
High-Speed Data Streams (M. Garofalakis, J. Gehrke, R. Rastogi, eds.),
Springer.

[9] W. Koehler, “A longitudinal study of web pages continued: a con-
sideration of document persistence,” Information Research, vol. 9,
no. 2, p. paper 174, 2004, [Available at http://InformationR.net/ir/9-
2/paper174.html].

[10] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, “On the Bursty
Evolution of Blogspace,” World Wide Web, vol. 8, no. 2, pp. 159–178,
2005.

[11] A. Ntoulas, J. Cho, and C. Olston, “What’s new on the web? The
evolution of the web from a search engine perspective,” in Proc.

WWW’04.

[12] R. Pastor-Satorras and A. Vespignani, Evolution and structure of the

Internet. Cambridge: Cambridge University Press, 2004.

[13] D. Spinellis, “The decay and failures of web references,” Communica-

tions of the ACM, vol. 46, pp. 71–77, 2003.

[14] S. Eubank, V. Kumar, M. Marathe, A. Srinivasan, and N. Wang,
“Structural and algorithmic aspects of massive social networks,” Proc.

15th ACM-SIAM Symp. on Discrete algorithms (SODA), pp. 718–727,
2004.

[15] S. Eubank, H. Guclu, V. Kumar, M. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang, “Modelling disease outbreaks in realistic
urban social networks,” Nature, vol. 429, pp. 429:180–184., Nov 2004,
supplement material.

[16] M. Keeling, “The effects of local spatial structure on epidemiological
invasions,” Proc. R. Soc. Lond. B, vol. 266, pp. 859–867, 1999.

[17] M. Kretzschmar and M. Morris, “Measures of concurrency in networks
and the spread of infectious disease,” Math. Biosci., vol. 133, pp. 165–
195, 1996.

[18] L. A. Meyers, M. Newman, and B. Pourbohloul, “Predicting epidemics
on directed contact networks,” Journal of Theoretical Biology, vol. 240,
pp. 400–418, 2006.

[19] J. M. Read and M. J. Keeling, “Disease evolution on networks: the role
of contact structure,” Proc. R. Soc. Lond. B, vol. 270, pp. 699–708,
2003.

[20] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace, “Discov-
ering hidden groups in communication networks,” in Proceedings of the

2nd NSF/NIJ Symposium on Intelligence and Security Informatics, 2004.

[21] A. Broido and K. Claffy, “Internet topology: connectivity of ip graphs,”
in Proceedings of SPIE ITCom, 2001.

[22] K. Carley, “Communicating new ideas: The potential impact of informa-
tion and telecommunication technology,” Technology in Society, vol. 18,
no. 2, pp. 219–230, 1996.

[23] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, “Information
diffusion through blogspace,” in Proc. WWW ’04, pp. 491–501.

[24] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influ-
ence through a social network,” in Proc. 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), 2003.

[25] M. Tsvetovat, K. Sycara, Y. Chen, and J. Ying, “Customer coalitions
in electronic marketplaces,” in Agent-Mediated Electronic Commerce

III, Lecture Notes on Artificial Intelligence, U. C. Frank Dignum, Ed.
Springer-Verlag, 2003.

[26] J. Tyler, D. Wilkinson, and B. Huberman, “Email as spectroscopy:
Automated discovery of community structure within organizations,” in
Proc. 1st International Conf. on Communities and Technologies, 2003.

[27] B. Wellman, “An electronic group is virtually a social network,” in
Culture of the Internet, S. Kiesler, Ed. Mahwah, NJ: Lawrence Erlbaum,
1997, pp. 179–205.

[28] J. Wang, Z. Zeng, and L. Zhou, “Clan: An algorithm for mining closed
cliques from large dense graph databases.” Los Alamitos, CA, USA:
IEEE Computer Society, 2006, p. 73.

[29] H. Kim, I. Kim, Y. Lee, and B. Kahng, “Scale-Free Network in Stock
Markets,” J. Korean Physical Society, vol. 40, no. 6, pp. 1105–1108,
2002.

[30] R. Breiger, K. Carley, and P. Pattison, Eds., Dynamic Social Network

Modeling and Analysis. Washington, D.C.: The National Academies
Press, 2003.

[31] T. Snijders, “The Statistical Evaluation of Social Network Dynamics,”
Sociological Methodology, vol. 31, no. 1, pp. 361–395, 2001.

[32] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” J. Comput. Syst. Sci., vol. 64, no. 4,
pp. 820–842, 2002.

[33] M. E. J. Newman, “From the Cover: The structure of scientific
collaboration networks,” PNAS, vol. 98, no. 2, pp. 404–409, 2001.
[Online]. Available: http://www.pnas.org/cgi/content/abstract/98/2/404

[34] ——, “Clustering and preferential attachment in growing networks,”
Physical Review E, vol. 64, no. 2, p. 25102, 2001.

[35] L. Getoor and C. P. Diehl, “Link mining: a survey,” SIGKDD Explor.

Newsl., vol. 7, no. 2, pp. 3–12, 2005.
[36] A. Popescul and L. Ungar, “Statistical relational learning for link predic-

tion,” IJCAI Workshop on Learning Statistical Models from Relational

Data, 2003.
[37] J. Vert and Y. Yamanishi, “Supervised graph inference,” Advances in

Neural Information Processing Systems, vol. 17, pp. 1433–1440, 2005.
[38] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference

problems for temporal networks,” Proc. 32nd ACM Symp. on Theory of

Computing (STOC), pp. 504–513, 1999.
[39] J. O’Madadhain, J. Hutchins, and P. Smyth, “Prediction and ranking

algorithms for event-based network data,” ACM SIGKDD Explorations

Newsletter, vol. 7, no. 2, pp. 23–30, 2005.
[40] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”

in Proc. 9th ACM SIGKDD International Conf. on Knowledge Discovery

and Data Mining (KDD). New York, NY, USA: ACM Press, 2003, pp.
286–295.

[41] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: mining maximal
frequent subgraphs from graph databases,” in Proc. 10th ACM SIGKDD

International Conf. on Knowledge Discovery and Data Mining (KDD).
New York, NY, USA: ACM Press, 2004, pp. 581–586.

[42] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi, “Scalable mining of large
disk-based graph databases,” in Proc. 10th ACM SIGKDD International

Conf. on Knowledge Discovery and Data Mining (KDD). New York,
NY, USA: ACM Press, 2004, pp. 316–325.

[43] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “LCM: An Efficient
Algorithm for Enumerating Frequent Closed Item Sets,” Proc. IEEE

ICDM03 Workshop FIMI03, 2003.
[44] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A maximal frequent

itemset algorithm for transactional databases,” Proc. 17th International

Conference on Data Engineering, pp. 443–452, 2001.
[45] X. Yan and J. Han, “gSpan: graph-based substructure pattern mining,”

2002, pp. 721–724.
[46] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” 2001,

pp. 313–320.
[47] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules,” Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499,
1994.

[48] B. Klimt and Y. Yang, “The Enron Corpus: A New Dataset for Email
Classification Research,” Proc. European Conf. on Machine Learning,
2004.

[49] G. Kolata, “Ideas and trends; enron offers an unlikely boost to e-mail
surveillance,” New York Times, May 22 2005.

[50] J. I. Adibi, “Enron email dataset.” [Online]. Available: {http:
//www.isi.edu/∼adibi/Enron/Enron.htm}

[51] I. R. Fischhoff, S. R. Sundaresan, J. Cordingley, H. M. Larkin, M. J.
Sellier, and D. I. Rubenstein, “Social relationships and reproductive
state influence leadership roles in movements of Plains zebra (Equus

burchelli),” Animal Behaviour (in press).
[52] “Yahoo! Finance,” accessed June 20, 2006. [Online]. Available:

http://finance.yahoo.com/

42

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

