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Abstract In systems of interacting entities such as social networks, interactions that occur
regularly typically correspond to significant, yet often infrequent and hard to detect, inter-
action patterns. To identify such regular behavior in streams of dynamic interaction data,
we propose a new mining problem of finding a minimal set of periodically recurring sub-
graphs to capture all periodic behavior in a dynamic network. We analyze the computational
complexity of the problem and show that it is polynomial, unlike many related subgraph or
itemset mining problems. We propose an efficient and scalable algorithm to mine all periodic
subgraphs in a dynamic network. The algorithm makes a single pass over the data and is
also capable of accommodating imperfect periodicity. We demonstrate the applicability of
our approach on several real-world networks and extract interesting and insightful periodic
interaction patterns. We also show that periodic subgraphs can be an effective way to uncover
and characterize the natural periodicities in a system.

Keywords Graph mining · Dynamic social networks · Periodic patterns ·
Frequent closed subgraphs · Parsimony

1 Introduction

Many natural and artificial systems can be modeled as a set of individual actors or entities,
such as humans, animals or computers, interacting among themselves. Network analysis is
the study of the structural and dynamic aspects of these interactions, in an effort to better
understand the nature of the underlying system. In this paper, we deal with the detection
of a type of predictable behavior in such systems, namely periodically recurring interaction
patterns in networks that change over time. Our goal is to detect periodic behavior even if
it persists only for a short period of time, since such locally periodic behavior often holds a
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special meaning in real-world systems. As the simplest form of predictable behavior, periodic
interaction patterns can indicate interesting relationships between the individuals involved
in the interactions. Furthermore, with the right formal definition of what constitutes peri-
odic behavior, the aggregate periodicities of an entire set of mined interaction patterns can
yield insight about the global dynamics of the system being observed. We define the periodic
pattern mining problem for dynamic networks as a step towards this goal, and describe an
efficient algorithm to mine all such patterns from a stream of dynamic interaction data.1

Part of the motivation for our work is the fact that streams of time-varying interaction data
are being collected in very diverse settings, which makes efficient, principled methods for
analyzing such data imperative. Although the best known example of network analysis is per-
haps social network analysis [35], network analysis has more recently been used in a variety
of fields to analyze systems as diverse as the Internet [15], animal behavior [16,33], e-mail
habits [7,11], mobile phone usage patterns [27], and co-authorship patterns in research pub-
lications [3,28]. There is also a recognized, emerging need to analyze the dynamic aspects of
interaction data in other fields. For example, ecologists often tag wild animals with GPS
or proximity sensors to study behavioral and social association patterns of the animals
[16,22,33]. This results in a continuous stream of interaction data, where periodically recur-
ring patterns might correspond to seasonal or other recurrent association patterns. The same
methodology has been used in human behavior experiments, with location-aware cellphones
naturally replacing tracking collars [12]. Analyzing the local periodicities in such datasets
presents opportunities for social science research, as well as commercial applications such
as recommender systems, traffic analysis and user modeling. The method presented in this
paper helps to answer two questions: what are the typical periodicities present in a dataset,
and what are the specific interaction patterns that occur at these periodicities?

Our definition of the periodic pattern mining problem is specifically tailored for the anal-
ysis of dynamic networks, and is generic enough to handle all the situations just mentioned.
It differs from earlier work in periodic pattern mining primarily in the use of two related
concepts: (a) the concept of closed subgraphs, and (b) the principle of parsimony. Closed
subgraph mining has been extensively explored in the context of a related problem of frequent
pattern mining [18]. It draws from the areas of formal concept analysis and lattice theory to
reduce redundancy in the definition of a frequent pattern, and thus reduces the potentially
exponential (in the size of the input) number of output patterns that must be computed [6,30].
The principle of parsimony is commonly known as Occam’s Razor, and is a widely practiced
guideline that suggests favoring the simplest hypothesis that is consistent with a phenome-
non. Combining these two concepts allows us to define periodic patterns in a way that avoids
any redundant information, is more amenable to analysis, and allows the development of a
provably efficient online mining algorithm. Furthermore, all the information contained in
earlier definitions of periodic pattern mining is contained in ours in a more compact form,
i.e., the output of earlier algorithms can be deterministically generated from the output of
our algorithm, but such a process would only add redundant information to the output.

We demonstrate the usefulness of mining periodic patterns on four diverse real-world data-
sets. Mirroring the increasing diversity of network analysis domains, we examine datasets
of wild zebra association patterns, geographical movement patterns of university students,
and the sightings of celebrities associated with the entertainment industry, among others. In

1 A shorter version of this paper appeared as [25]. The major additions to this version are as follows: (a) we
formally describe the framework of mining parsimonious periodic patterns, (b) we describe and prove the
correctness of a more efficient version of the algorithm in [25], (c) we use smoothing instead of jitter to handle
noise, since the former is better defined, and (d) we evaluate the performance of our algorithm compared to
the SMCA algorithm [20].
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addition to demonstrating the practical efficiency of our algorithm, we find that analyzing the
collective periodicities of all mined patterns is indeed informative about the dynamics of the
system being studied, yielding highly intuitive results about the specific systems we analyzed.
We also found a number of interesting patterns which are intriguing because of a combination
of their structure and periodicity. Some of these patterns occur relatively infrequently and
might not have stood out had only their frequency of occurrence been considered, as is the
case in frequent pattern mining.

This paper is organized as follows. In the next section, we present some preliminary def-
initions related to dynamic networks, as well as some graph theoretic properties that are key
to the inherent complexity of the problem. In Sect. 3, we formally define the mining problem,
which incorporates the concepts of closed subgraphs and parsimony. This is followed by a
discussion of related literature in Sect. 4. In Sect. 5, we analyze the inherent complexity of
the problem and derive an exact upper bound on the maximum number of possible periodic
subgraphs in any dynamic network. We show that the mining problem is in the computational
complexity class P (polynomial), in contrast to the closely related frequent pattern mining
problem [4,37]. The complexity analysis of the problem is then used in Sect. 6 to build an
efficient, online mining algorithm. The results of our experimental evaluation are presented
in Sect. 7, followed by some concluding remarks and possible future research directions.

2 Preliminaries

Dynamic networks are a representation for a time series of interactions between a set of
unique entities. Let V ∈ N represents this set of entities. Interactions between entities can
be either directed or undirected, and are assumed to have been recorded over a period of
T discrete timesteps. The question of how much real time should constitute a timestep is
beyond the scope of this paper; we use natural quantizations specific to each of our datasets,
such as 1 day per timestep. The only requirement is that a timestep should correspond to a
meaningful amount of real time, as the periodicities of mined subgraphs will be in multiples
of the chosen timestep.

Definition 2.1 (Dynamic network) A dynamic network G = 〈G1, . . . , GT 〉 is a time-series
of graphs, where Gt = (Vt , Et ) is a simple graph of interactions Et observed at timestep t
among the subset of entities Vt ⊆ V at timestep t .

Figure 1 is an example of a dynamic network with five timesteps. Definition 2.1 implies a
convenient graph theoretic property that reduces the high computational complexity of many
algorithmic tasks on graphs: since a vertex represents a unique entity, each vertex v in a
particular timestep’s graph Gt has a unique vertex label. This constitutes a class of graphs
that can be represented as sets of integers, resulting in a reduction to quadratic computational
complexity (in the number of vertices) for certain hard graph problems, such as maximal
common subgraph and subgraph isomorphism [10,24,25].
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Fig. 1 An example of a dynamic network with five timesteps
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Fig. 2 The correspondence between graph and set representations for graphs with unique vertex labels. The
example demonstrates the computation of the maximal common subgraph of two graphs using set represen-
tation

Property 2.1 (Set representation) For a graph G = (V, E) with unique vertex labels, the
set representation R for G is formed by mapping each vertex and edge to a unique element
in R, where R ⊂ N.

Since each vertex is uniquely identifiable by its label, it follows that each edge is also
uniquely identifiable by its endpoints. This allows each vertex and edge to be coded as a
unique integer, even across different graphs over the same vertex set. It can trivially be
shown that two graphs (or timesteps) will result in the same set R if and only if they have
identical vertex and edge sets. Although connectivity information is lost in the set represen-
tation, it is a useful transformation for the following algorithmic tasks, which are key to the
development of our algorithm.

Property 2.2 (Subgraph testing) For two graphs G1 and G2 with unique vertex labels, test-
ing whether G1 is a subgraph of G2 or vice versa is equivalent to checking whether the
corresponding set representations R1 and R2 are subsets of each other. For this reason, we
use the subset operator ⊆ to denote a subgraph relationship between G1 and G2.

Property 2.3 (Maximal common subgraph) For a set f graphs with vertex unique labels,
finding the maximal common subgraph (MCS) is equivalent to the maximal intersection of
their set representations. For a set of graphs G1, . . . , GT , a vertex or an edge is part of the
MCS if it is part of every Gt . As a result, the MCS always exists, is unique and well-defined,
but could possibly be the empty graph with no vertices or edges. We use the intersection
operator ∩ to denote the MCS of two or more graphs.

Property 2.4 (Hashing) A hashing function exists for graphs since the set representation R
has a global ordering by virtue of R ⊂ N.

Figure 2 demonstrates the use of Property 2.1 to calculate the MCS of two graphs using set
representation. A further implication of the set representation is that a dynamic network can
be represented as a transaction database (also known as ‘market-basket’ data [1]) for certain
data mining tasks like frequent subgraph mining2 [21,23]. Although mining for periodic

2 Since connectivity information is lost in the set representation, frequent connected subgraphs and subgraphs
with other specific graph-theoretic properties cannot be extracted from the set representation.
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patterns in time-ordered transaction databases has been studied in different contexts [18–
20,29,38], one of the main advantages of our framework is the ability to handle structured
data like dynamic networks (with connectivity information) while also being applicable to
unstructured data like transaction databases.

We now introduce some terminology from the frequent pattern mining problem to be used
in our problem definition and analysis.

Definition 2.2 (Support) Given a dynamic network G of T timesteps and an arbitrary graph
F = (V, E), the support set S(F) of F in G is the set of all timesteps t in G where F is a
subgraph of Gt , which we denote F ⊆ Gt . The support of F is the cardinality of its support
set, |S(F)|:

S(F) = {ti , . . . , t j } such that ∀t (t ∈ S(F)↔ F ⊆ Gt ).

Definition 2.3 (Frequent subgraph) Given a dynamic network G of T timesteps, an arbi-
trary graph F = (V, E) is frequent if its support exceeds a user-defined minimum support
threshold σ ≤ T .

Definition 2.3 is the basis of the well-known frequent pattern mining problem, which deals
with the extraction of all subgraphs F where |S(F)| ≥ σ . An implication of the naïve defini-
tion of a frequent subgraph is the downward closure property, which states that every subgraph
of a frequent subgraph F is itself frequent. This serves as the underpinning of Agrawal and
Srikant’s classic Apriori algorithm, which searches for large frequent patterns by iteratively
concatenating the smaller, frequent sub-patterns implied by the downward closure, relying
on the sparsity of larger frequent patterns [1]. The downward closure is what makes a prin-
cipled, incremental search through pattern space tractable, but is also a double-edged sword.
Although many improvements have been made to the classic Apriori algorithm [8,18], any
mining algorithm required to explicitly enumerate every frequent pattern in a dataset would,
in doing so, have to enumerate the exponential number of subgraphs of every frequent sub-
graph which is a redundant and resource expensive process. The cornerstone of a solution to
this problem is the use of closed subgraphs [6,18,30].

Definition 2.4 (Closed subgraph) Given a dynamic network G of T timesteps and an arbi-
trary graph F = (V, E), F is closed if it is maximal for its support set: no vertex or edge can
be added to F while maintaining its support.

Mining frequent closed subgraphs is an elegant solution to the redundancy of the gen-
eral frequent pattern mining problem. It captures all the information of the more general
formulation, but can result in output that is exponentially smaller in size without any loss
of information. We therefore adopt it as an integral part of our problem definition, which is
described in the next section.

3 Problem definition

We formally define the periodic subgraph mining for dynamic networks as a special case
of frequent closed pattern mining with important additional computational properties. These
properties allow the development of efficient mining algorithms and justify an independent
treatment of the problem, rather than an approach that would, for example, push constraints
into a conventional frequent pattern mining algorithm [17,31,32,41]. The relation to frequent
pattern mining also highlights the fact that we are searching for locally periodic patterns, i.e.,
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those that exhibit periodic behavior in a contiguous subsequence of the entire data stream.
These are also known as partially periodic patterns [19,20,26]. We begin with a basic for-
mulation of the problem and then develop it into a parsimonious formulation. We end this
section by describing mechanisms to rank periodic patterns and handle imperfect periodicity
in real-world datasets.

3.1 Basic formulation

Definition 3.1 (Periodic support set) Given a dynamic network G and an arbitrary subgraph
F = (V, E), a periodic support set of F in G, denoted SP = (i, p, s), is a maximal, ordered
set of s timesteps starting at ti with every two consecutive timesteps being p steps apart.

SP = (i, p, s) = 〈ti , ti+p, . . . , ti+p(s−1)〉
subject to the following constraints:

1. Existence in G: F must exist at all timesteps in SP , i.e., ∀t (t ∈ SP → F ⊆ Gt ). Note
that the implication in the constraint is only in the forward direction, unlike Definition 2.3.

2. Minimum size: A periodic support set has to have at least two elements, i.e., |SP | =
s ≥ 2.

3. Temporal maximality: The support set cannot be extended in time to contain F and
still be periodic, i.e., F �⊆ Gt(i−p)

and F �⊆ Gt(i+p·s) .

The phase offset of a periodic support set is defined as m = (ti − 1) mod p, since indices
start from 1. Thus, 0 ≤ m < p.

A key difference in the definitions of a support set for frequent pattern mining and periodic
pattern mining is that a single graph F can have multiple periodic support sets to allow for
multiple, disjoint, or overlapping periodic behavior. Thus, we require the extraction of all
periodic subgraph embeddings, rather than just the periodic subgraphs themselves. This is
encompassed in the following definition.

Definition 3.2 (Periodic subgraph embedding) Given a dynamic network G, a periodic sub-
graph embedding (PSE) is a pair 〈F, SP 〉, where F is an arbitrary graph that is closed over
a periodic support set SP with |SP | ≥ σ . The following list summarizes the properties of a
PSE:

1. Minimum support: |SP | ≥ σ ≥ 2, from Definition 3.1.
2. Structural maximality: F is maximal over SP , i.e., F is the MCS of SP , from Defini-

tion 2.4.
3. Temporal maximality: SP is temporally maximal for F , from Definition 3.1.

Figure 3 shows an example of a dynamic network with two PSEs at σ = 3. The first is the
subgraph {(1, 4), (1, 5)} with a period of 2 and support set of 〈1, 3, 5〉, and the second is the
singleton vertex {1} with a period of 1 and a support set of 〈3, 4, 5〉. Note that the subgraph
{(1, 2), (1, 3)} is frequent but not periodic at σ = 3.

Fig. 3 An example of a dynamic network with two PSEs at σ = 3
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3.2 Parsimonious formulation

We now address the issue of redundant information in the output. If we think of a PSE from
Definition 3.2 as communicating a set of timesteps at which a particular subgraph exhib-
its periodic behavior, a PSE which communicates information that is already contained in
another PSE is redundant. For example, a subgraph F of period 2 with adequate support will
also be output as a subgraph of period 4, and so on. This will continue for a fixed number
of multiples of the base period, depending on the support of the pattern and the minimum
support, in spite of the fact that the higher multiples communicate no new information about
the subgraph in question. Furthermore, when analyzing periodic behavior in terms of the
periodicities of mined patterns, there is no justifiable reason prima facie (or in keeping with
Occam’s Razor) to count multiples of a base pattern’s period, unless those multiples extend
beyond the support of the base pattern.

Although the use of closed subgraphs reduces much of the redundancy associated with
the output of an Apriori style algorithm, the basic definition of a PSE still retains some of
it. To eliminate all such redundancy, we pose our problem as that of mining a minimal set
of patterns to cover all periodic occurrences of all periodic subgraphs. Keeping in line with
the principle of parsimony, this eliminates patterns with periods that are multiples of a base
period, unless they convey some new information about a periodic occurrence. In order to
describe this concept formally, we first define the notion of subsumption of PSEs.

Definition 3.3 (Subsumption) For two periodic subgraphs F1 and F2 with respective peri-
odic support sets SP,1 = (i1, p1, s1) and SP,2 = (i2, p2, s2), 〈F1, SP,1〉 completely contains
or subsumes 〈F2, SP,2〉 if all of the following conditions hold:

1. F2 ⊆ F1

2. ti2 ≥ ti1

3. ti2+p2·(s2−1) ≤ ti1+p1·(s1−1)

4. p2 = k · p1 for some integer k > 0
5. ti,2 = ti,1 + l · p1 for some integer l ≥ 0

We prove that all conditions listed above are necessary for subsumption. Condition 1
is trivially required to ensure that no information is lost. Let f1(l) = ti,1 + l · p1 and
f2(l) = ti,2 + l · p2 be the lth occurrence of F1 and F2, respectively, for some integer l. For
subsumption, we require that the support set SP,2 is completely contained within the support
set SP,1. Conditions 2 and 3 require that the support set of F2 is contained within the bounds
of the support set of F1, although they could be of different phase offsets and not overlapping
at all, or partially overlapping but of different periods. Condition 4 requires that the period of
F ′ is an integer multiple of F , and condition 5 requires that F1 and F2 have compatible phase
offsets, which ensures that they overlap. This is handled by requiring that the first occurrence
of F2 overlap with any occurrence of F1. Thus, ti,2 = f1(l), which yields the final condition
ti,2 = ti,1 + l · p1.

Definition 3.4 (Parsimonious PSE) A PSE that is not subsumed by any another PSE is a
parsimonious periodic subgraph embedding (PPSE).

As an example to motivate the mining of PPSEs, consider a system in which all the nodes
only interact periodically with either period 2 or 4, starting at arbitrary times and continuing
for an arbitrary number of repetitions. Suppose that we want to discover these unknown
periodicities by observing the system for a period of time. With non-parsimonious PSEs,
duplicates of each true periodic pattern would be reported for a fixed number of multiples
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of either 2 or 4, depending on the specific pattern. If we were to plot a histogram of the
periodicities of all mined patterns, we would see various artifacts from the higher order peri-
odicities, which could obscure the true periodicities. On the other hand, with parsimonious
PSEs and enough data, the true periodicities of 2 and 4 would, with high probability, be the
most prominent peaks.

Definition 3.5 (Periodic subgraph mining problem) Given a dynamic network G and a min-
imum support threshold σ ≥ 2, the Periodic Subgraph Mining problem is to list all
parsimonious periodic subgraphs embeddings in G that satisfy the minimum support.

3.3 Practical considerations

3.3.1 Handling noise by smoothing

Since real-world networks are unlikely to always contain perfectly periodic patterns, we use
smoothing as a mechanism for accommodating imperfect periodicity. Given a user-defined
smoothing parameter S ≥ 1, we transform the dynamic network by considering a sliding win-
dow over its timesteps. In other words, we transform the dynamic network G in the following
manner,3 where Gi ∈ G:

G′ = 〈G1 ∪ . . . ∪ GS, G2 ∪ . . . ∪ GS+1, . . .〉
In addition, the following two conditions handle the removal of artifacts introduced by the
smoothing process.

1. The minimum period Pmin is set to S.
2. PSEs of the same subgraph that share the same period and differ in their starting positions

by at most S− 1 timesteps are merged. In other words, the PSE with the highest support
is retained. This can be done as a post-processing step or incorporated into the mining
algorithm itself.

By introducing this smoothing mechanism, we allow a window of timesteps within which
the order of events does not matter. No smoothing is performed at S = 1.

3.3.2 Purity: a measure for ranking periodic subgraphs

A periodically recurring subgraph is not necessarily representative of an interaction pattern
that occurs only periodically, as shown in Fig. 4. The purity measure expresses how likely it
is that a PSE occurs only periodically over its support set.

Definition 3.6 (Purity) Given a PSE 〈F, SP 〉 with period p, starting at timestep ti and with
support s = |〈ti , . . . , t j 〉|, the purity of F is the ratio of its periodic support to its total support
in the timestep range [ti , t j ].

Purity(F) = s

|{t : F ⊆ Gt , ti ≤ t ≤ t j }|
It is sometimes advantageous to define the purity of a subgraph as the average purity of its

edges. Doing so is more representative of the temporal characteristics of the entire subgraph.
We use the term ‘purity’ to refer to average purity for the remainder of this paper. Figure 4
shows an example of the purity measure.

3 Blank timesteps are appended to the beginning and end of the dynamic network as necessary to handle
boundary conditions.
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Fig. 4 A periodic subgraph embedding (bold) with non-periodic occurrences. The purity of this periodic
subgraph is 3/5, whereas its average purity is 1

2 ( 3
5 + 3

7 ) ∼ 0.51

Definition 3.7 (Average purity) The average purity of a subgraph F = (V, E) is the average
purity of all of its edges.

AvgPurity(F) = 1

|E |
∑

e∈E

purity(e)

4 Related work

Searching for periodicity and periodic patterns have appeared in different contexts in data
mining. In this section, we review relevant literature concerning periodic pattern mining,
as well as the closely related problem of frequent pattern mining. We omit certain earlier
antecedents to this line of research, such as mining cyclic association rules [29] and frequent
sequential patterns [2], as they are not directly relevant. Also, omitted for the same reason
are periodic pattern mining approaches that require or assume that the entire input is at least
approximately periodic, including techniques that use Fast Fourier Transforms [13,14].

Most algorithms for mining periodic patterns deal with unstructured data such as a
sequence or multiple, aligned sequences. In the most general formulation of the problem, the
input consists of a sequence of symbols sets S = 〈a1, . . . , aT 〉, where each symbol set ai is
drawn from a finite universal set L. A pattern is a sequence P = 〈b1, . . . , bp〉 of length p,
where p is the period of the pattern and each bi ⊆ L ∪ {∗}. The ‘*’ character is a wild card
that matches any symbol. Less general versions consider only a single sequence as the input,
so each ai ∈ L and bi ∈ L ∪ {∗}. The pattern mining problem is to extract all such patterns
from the input sequence, subject to constraints such as a minimum support. Algorithms for
this task are generally variants of the classic Apriori algorithm of Agrawal and Srikant [1],
in which larger patterns are iteratively built from smaller ones. Note that the definition of a
periodic pattern in this line of research is essentially a sequence with wildcards, whereas our
definition is closer to concepts from frequent pattern mining.

Han et al. introduced one of the first algorithms to mine partial periodic patterns in multidi-
mensional sequences [19]. They adopt an Apriori-inspired search through pattern space using
a novel prefix-based data structure called a max-subpattern tree. Ma and Hellerstein [26] pro-
pose a similar, Apriori-inspired approach consisting of two level-wise algorithms for mining
periodic patterns in the presence of both partial periodicity as well as imperfect periodic-
ity. They also propose an interesting statistical (as opposed to combinatorial) foundation for
defining periodicity.

Yang et al. [38,39] proposed another level-wise mining algorithm for detecting ‘surprising’
periodic patterns, i.e., those judged to be interesting based on deviation from their expected
frequency. This is intended to overcome limitations of using the support of a pattern as the
sole measure of its worth. They devise two variants of information gain as measures of inter-
est: bounded information gain [38] and generalized information gain [39], the second of
which obeys the triangle inequality. However, a number of independence assumptions are
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made, such as the probability of occurrence of an event being the same at any point in time,
and these might not hold in dynamic networks.

Yang et al. [40] propose a level-wise mining algorithm that allows imperfect (or ‘asyn-
chronous’) periodic patterns to be discovered. They do this by introducing two user-defined
parameters into the mining process to specify the minimum number of repetitions of a pattern
and the maximum amount of disruption allowed. Huang and Chang [20] build on this in their
description of SMCA, a suite of four algorithms for mining periodic patterns [20]. The fun-
damental idea is still to conduct a level-wise search through pattern space, but augmented
with more efficient data structures and algorithms than earlier approaches. Each algorithm
enumerates more complex patterns from the output of an earlier stage.

Finally, our work is inspired by frequent pattern mining, which is concerned with the
discovery of patterns that occur more frequently than a user-defined threshold. A relatively
young offshoot of this line of research is frequent subgraph mining [21,23], which was
originally devised to search for common structures in databases of chemical compounds
represented as graphs. A detailed overview of this field is beyond the scope of this paper,
but may be found in [18] and [8]. There are, however, a number of recent complexity results
for frequent pattern mining that are relevant. Specifically, given a set of maximal frequent
itemsets, Boros et al. [4] show that it is NP-complete to decide if there is a further maxi-
mal frequent itemset. Yang [37] shows that different variants of maximal frequent pattern
mining, including itemsets and subgraphs with unique vertex labels, are either #P-hard or
#P-complete in terms of counting the number of satisfying solutions. Thus, many variants of
frequent pattern mining are computationally intractable in the worst case.

5 Complexity analysis of the mining problem

We now analyze the computational complexity of the periodic subgraph mining problem as
defined in Sect. 3. In order to do this, we derive an exact upper bound on the number of PSEs
that can exist in any dynamic network of T timesteps. We prove that this upper bound is a
polynomial function of the number of timesteps and the minimum support value. We show
that the upper bound is sharp by constructing a ‘worst-case’ dynamic network.4 The proof
leads to the conclusion that mining all closed PSEs can be done in polynomial time in the
size of the input, proving that the mining (enumeration) problem is in the complexity class
P, when the graphs have unique vertex labels. This is in contrast to the more general frequent
subgraph mining problem, which is NP-hard for enumeration and #P-complete for count-
ing, even with unique vertex labels [4,37]. We take advantage of the intrinsic polynomial
complexity of the problem to design an efficient single-pass mining algorithm in Sect. 6. We
do not include smoothing in the following analysis, and purely algebraic manipulations are
omitted for brevity.

Theorem 5.1 Periodic Subgraph Mining in dynamic networks is in P.

To prove Theorem 5.1, we first construct a class of worst-case dynamic networks and
show that any member of this class has the maximum possible number of PSEs. We utilize
the concept of a projection of a discrete time sequence to count the maximum number of
PSEs in this class of dynamic networks [13].5

4 An alternate version of this proof in terms of maximal subgraphs, but with the same outcome, can be found
in [25].
5 In principle, any combinatorial technique can be used to count the number of PSEs. Projections are conve-
nient for Definition 3.2 and some extensions to it.
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Fig. 5 An example of a worst
case dynamic network for mining
PSEs at σ = 3

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

1 2

5 3

Definition 5.1 Given a dynamic network G, a projection πm,p of G is a subsequence of
graphs

πm,p = 〈G1+m, G1+m+p, G1+m+2p, . . .〉,
where p is the period of the projection and 0 ≤ m < p is the phase offset.

It should be clear from the definitions of periodicity and projection that any periodic
support set at minimum support σ is embedded in at least σ consecutive positions of some
projection πm,p .

Proposition 5.1 Let F be the MCS of any s ≥ σ consecutive positions of any projection
πm,p. If F is not empty, then it is a periodic subgraph and the s consecutive timesteps from
πm,p are part of a PSE for F.

Proof A non-empty MCS F of any s ≥ σ consecutive positions implies that F is maximal
over a support set of at least σ periodic timesteps, which in turn might or might not be
temporally maximal for F . However, in either case, the s timesteps are part of some valid
periodic support set of size at least σ . This is a sufficient condition to satisfy Definition 3.2,
and thus F is a periodic subgraph. ��
Corollary 5.1 In the worst computational complexity case for mining PSEs in a dynamic
network, the MCS of every s ≥ σ consecutive positions of every projection is not empty and
contains a unique PSE.

Proof Clearly, if every periodic subset of s ≥ σ timesteps of the dynamic network contains
a unique MCS, then they all need to be enumerated by any mining algorithm and it is indeed
the worst case input for a periodic subgraph mining problem. We now show that it is attain-
able using an explicit construction. We place a different edge in each s ≥ σ consecutive
positions of every projection to ensure that each edge is part of a unique PSE. Let edge e
be created in this way with support set SP in some πm,p . Considering only SP , we know
that it is temporally maximal for the edge e because e does not exist in any other timesteps.
Furthermore, the MCS of SP is non-empty because it contains at least the edge e. Thus, each
edge is part of a unique PSE whose support set is SP . Since a different edge was placed in
every s ≥ σ consecutive positions of every projection, the number of PSEs is equal to the
number of edges created. No additional PSEs can be created since every permissible support
set, i.e., with support greater than σ , is already part of a unique PSE. Therefore, the described
structure is a worst case instance for its size. ��

Figure 5 shows an example construction of such a worst-case dynamic network with 12
PSEs at σ = 3. The next step is to explicitly calculate the upper bound on the number of
PSEs in the worst-case network instances. Following from Corollary 5.1, we only need to
count the number of s ≥ σ consecutive positions of every projection to derive this bound. In
order to do this, we first state the bounds on several other parameters.
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Proposition 5.2 In a dynamic network with T timesteps, the maximum period of any periodic
subgraph with support at least σ is P = �(T − 1)/(σ − 1)�.
Proposition 5.3 In a dynamic network with T timesteps, the length of any projection is
|πm,p| = �(T − m)/p�.

The proofs of the Propositions 5.2 and 5.3 are straightforward and similar to those in [13].
Given the above expressions, we now derive an exact bound by construction.

Theorem 5.2 In a dynamic network with T timesteps, there are at most O(T 2 ln T
σ
) closed

PSEs at minimum support σ .

Proof From Corollary 5.1, the maximum number of PSEs possible in a dynamic network
at minimum support σ is equal to the number of s ≥ σ length windows over all possible
projections of the network. For a given projection πm,p and value of s, it is clear that the
number of length-s windows over the projection is |πm,p|− s+1, where |πm,p| is the length
of the projection defined in Proposition 5.3. Thus, for a given value of s, the number of
length-s windows over all projections can be obtained by substituting the expressions from
Propositions 5.2 and 5.3:

⌊
T−1
s−1

⌋

∑

p=1

p−1∑

m=0

(⌈
T − m

p

⌉
− s + 1

)

We have replaced σ with s in the expression for the maximum period of a pattern from
Proposition 5.2, since we only want projections which contain at least one length-s window
for any s. This constitutes the outer summation; the inner summation is over all possible phase
offset values m for a given period p. Finally, the term inside the summation is the number of
length-s windows in any projection, where |πm,p| has been substituted from Proposition 5.3.
We now sum this expression over all possible values of s, which run from σ to T , and relax
the floor and ceiling expressions for an asymptotic closed form approximation.

T∑

s=σ

⌊
T−1
s−1

⌋

∑

p=1

p−1∑

m=0

(⌈
T − m

p

⌉
− s + 1

)
(1)

∼
T∑

s=σ

T−1
s−1∑

p=1

p−1∑

m=0

(
T − m + p

p
− s + 1

)
(2)

Expression 2 algebraically simplifies to an expression that is O(T 2 · H( T−1
σ−1 )), where

H(n) = ∑n
k=1

1
k is the nth harmonic number, asymptotically approximated by ln n. Thus,

the number of PSEs at minimum support σ is bounded asymptotically by O(T 2 ln T
σ
) (and

exactly by Eq. 1). ��
Proof of Theorem 1 To finally prove Theorem 5.1, consider an algorithm that outputs the
MCS of every σ length window of every projection. Since the MCS of a set of graphs with
unique vertex labels can be found in time O(V + E) [10], in the worst case, this results
in O(T 2 ln T

σ
) periodic ‘fragments’ computed in �((V + E)T 2 ln T

σ
) time. Every pair of

periodic fragments is then compared and merged if they represent overlapping embeddings
of the same periodic subgraph, in time O((V +E)(T 2 ln T

σ
)2), resulting in all PSEs. Another
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run over pairs of PSEs can eliminate all non-parsimonious PSEs, resulting in an overall time
complexity of O((V + E)T 4(ln T

σ
)2). Thus, the mining problem is in P, and the exact bound

on the number of closed PSEs is given in summation form in Theorem 5.2. ��

6 The algorithm

We now present PSEMiner,6 our algorithm for mining all PPSEs in a dynamic network. We
start by describing the most basic form of the algorithm, which mines closed (not just parsi-
monious) PSEs, and proving its correctness and complexity. We then describe some simple
optimizations to the basic algorithm that allow it to output only PPSEs and also improve its
efficiency in practice.

PSEMiner is based on the following idea: as each timestep of the dynamic network is
read, we maintain a list of all PSEs seen up to timestep t . This list is maintained in a simple
data structure called a pattern tree, which also tracks subgraphs that might become periodic
at some point in the future. Once PSEs cease to be periodic, they are flushed from the tree
and written to the output stream if they satisfy certain conditions like the minimum support.
As each timestep Gt is read from the data stream, the pattern tree is updated with the new
information, which could involve modifying, adding and deleting tree nodes. The complex-
ity analysis in Sect. 5 allows us to prove worst-case computational time and space bounds
that are polynomial in the size of the input. We describe the algorithm, its parameters, data
structures and a proof of correctness in the following five sections. In Sect. 6.6, we describe
optimizations that complete the description of the algorithm.

6.1 Parameters

Our algorithm is a single-pass, polynomial time and space algorithm for mining all closed
PSEs in a dynamic network. It does not require any parameters, but optionally accepts the
following:

1. Minimum support threshold σ ≥ 2 (default: 2).
2. Minimum period Pmin (default: 1).
3. Maximum period Pmax (default: unrestricted).
4. Smoothing timesteps S ≥ 1 (default: 1).

When the Pmax parameter is restricted, our algorithm functions as an online algorithm,
retaining only the parts of the dataset in memory that it requires to calculate periodicities.
There is a natural bound on the maximum period of mined patterns if the number of timesteps
T is finite and known (see Proposition 5.2). However, in many situations this information
is not available or relevant, such as in streaming sensor data. In such cases, an unrestricted
maximum period value places a large computational burden on the algorithm, and requires
that the entire dataset be retained in memory. This is because at any timestep t , any previ-
ously observed timestep t ′ < t could contain the initial occurrence of a periodic subgraph
whose second occurrence is at timestep t . Testing for this situation requires all previously
seen timesteps to be retained in memory, either explicitly or in some compressed form. The
optional Pmax parameter limits the maximum period of mined patterns, and thus eliminates
the need to retain previously seen timesteps beyond a certain history.

The default parameters mine a complete set of periodic subgraphs without any smoothing,
although in practice, only σ values of 3 or more are meaningful. The output of the algorithm

6 Periodic Subgraph Embedding Miner.
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is a set of closed parsimonious periodic subgraphs embeddings that satisfy the minimum sup-
port. Each embedding is written to the output stream as soon as the last possible occurrence
of the subgraph has been encountered, or when the input stream has been exhausted.

6.2 Data structures

As the algorithm scans the input stream, it maintains three primary data structures to track
PSEs: a pattern tree, a subgraph hash map, and an optional timeline list to increase effi-
ciency. An auxiliary data structure, called a descriptor, is used as a compact representation
of a periodic support set. We refer to nodes in the pattern tree as treenodes to distinguish them
from nodes (vertices) in the dynamic network or in a periodic subgraph. Each treenode N is
associated with a single periodic subgraph F and a set of descriptors that represent PSEs of F .
We use the notation ‘treenode N /F’ to refer to a treenode N that represents subgraph F .

6.2.1 Pattern tree, subgraph hash map and timeline list

The tree structure represents a subgraph relationship between periodic subgraphs. The struc-
ture of the pattern tree is subject to a single constraint: with the exception of the special
root node, all descendants of a treenode N /F are associated with proper subgraphs of F ,
but not all subgraphs of F are necessarily its descendants in the tree. This property allows
efficient traversal of the tree by the mining algorithm, and also allows the tree to be built and
manipulated quickly and represented using very little space.7 It also allows efficient traversal
by virtue of the fact that if F is not observed at a given timestep for treenode N /F , then
neither are the subgraphs represented by N ’s descendants (except for the root node). Direct
access to treenodes is also required, which is achieved using a hash map to associate periodic
subgraphs with their corresponding treenode. This can be done efficiently, as described in
Property 2.4 of the set representation of dynamic networks. The timeline list is an optional
component that links treenodes to the future timesteps at which they are expected to appear.
Its use is discussed in Sect. 6.6.

6.2.2 Treenodes

Each treenode N /F contains a list of descriptors {D1, . . . , Dn}, one for each observed PSE
of F . In addition, each treenode maintains a list of periods and phases of all live descriptors
(see below), which is used by the tree update algorithm. Querying, adding to, and removing
descriptors from this list are the primary operations on a treenode.

6.2.3 Descriptors

A descriptor D is the abbreviated representation of a periodic support set. It is associated with
a treenode N /F and defines a unique PSE for F . It is formally described as a triple, since it
represents a periodic support set SP = (i, p, s). The last element in the support set is defined
as t j = ti + p · (s − 1) and the next expected timestep as tn = t j + p. Since descriptors are
created, updated, and deleted as the input stream is read, the following definition describes
the different states in which a descriptor could be at any given time.

7 An alternative to the tree representation would be to construct a full subgraph lattice [6], with a correspond-
ing increase in time and space complexity. Whether lattices are more efficient given the typical sparsity of
dynamic networks is a question for future research.
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Definition 6.1 (Descriptor states) At timestep t , a descriptor D for a subgraph F is live
if tn > t or if tn = t and F is present at Gt . A descriptor that is not live is not currently
exhibiting periodic behavior; it cannot change state again once it is not live. A descriptor
where ti = t j is a special case called an anchor descriptor, as it does not represent a periodic
support set but could potentially become one if the associated subgraph F is observed at a
future timestep. An anchor descriptor is defined to have a period of 0. An anchor descriptor
is always live, unless Pmax is defined and t − ti > Pmax, in which case the anchor can never
lead to a valid PSE with period at most Pmax, and is no longer needed.

6.3 Tree update algorithm

We now describe the update algorithm for the pattern tree, which is the core of the mining
process. It is called once for each timestep that is read from the input. Starting with an initial
pattern tree with an empty root treenode, at timestep t the algorithm traverses the pattern
tree in a breadth-first search (BFS) to update treenodes with the new information contained
in Gt . For each Gt , we are only interested in treenodes which might be affected by the new
information. This excludes any subgraph F which has an empty MCS with Gt . In most cases,
this process eliminates some branches of the pattern tree from the BFS traversal. At each
treenode N/F where F has some part in common with Gt , we update descriptors at N in
a manner described below. We end each tree update by ensuring that a treenode for Gt in
its entirety exists in the tree with an anchor descriptor for timestep t . This accounts for the
possibility that Gt in its entirety is the first occurrence of a (future) periodic subgraph. If
such a treenode does not exist, it is created at a location which does not violate the subgraph
property of the tree, such as the root.

During the breadth-first traversal of the tree, one of the following three conditions holds
at each treenode N /F . Let C = F ∩ Gt be the MCS of Gt and F .

1. Update descriptors: If F ⊆ Gt , i.e., if F = C , then F has appeared in its entirety at
timestep t . Let D be any descriptor in N and tn = t j + p be the next expected timestep
for D.

(a) If tn = t , then D has appeared where it was expected. Timestep t is added to D’s
support to ensure temporal maximality.

(b) If tn < t , then D has not appeared when expected and is thus no longer live. It is
written to the output stream if its support is greater than or equal to σ , and removed
from the tree.

(c) If tn > t , then nothing is done.
(d) If p = 0, then D is an anchor descriptor. Given that timestep t is the second occur-

rence of F , a new descriptor D′ is spawned with period p′ = t − ti and phase
offset m′ = (ti − 1) mod p′. If N does not contain a live descriptor with the same
period and phase offset, D′ is added to the list of descriptors at N .

2. Propagate descriptors: If C �= ∅ and the condition above does not hold, then a sub-
graph C of F is present at timestep t , instead of F in its entirety. This happens, for
example, when a formerly periodic subgraph F fractures into a smaller subgraph C that
continues F’s periodic behavior. If a treenode for C does not already exist in the tree,
determined using the subgraph hash map, it is created as a child of N (to satisfy the
subgraph relationship). Let D be any descriptor at N . If tn = t , then D represents a PSE
which subgraph C must inherit and continue. The treenode for C receives a copy of D, if
a live descriptor of the same period and phase offset does not already exist. The pattern
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Fig. 6 The pattern tree at each timestep for the dynamic network shown in Fig. 3, considering only edges for
brevity

<F , D> is written to the output stream if the support of D is greater than or equal to σ ,
and then D is removed from treenode N .

3. Dead subtree: If C = ∅, then Gt and F have no common subgraph, and no descriptors
at N are directly affected by the observation of Gt . Furthermore, no treenode that is
a descendant of N will have any common subgraph with Gt either, since they are all
subgraphs of F . The subtree rooted at N is therefore eliminated from the rest of the tree
traversal.

Algorithm 1 UpdateTree(Gt )
Require: Gt is the graph of timestep t
1: Q ← new queue
2: push(Q, root.children)
3: while N ← pop_front(Q) do
4: C ← Gt ∩ N
5: if C is not empty then
6: if N ⊆ Gt then
7: UpdateDescriptors(N )
8: else
9: W ← FindNode(N ) or NewNode(N , C)
10: PropagateDescriptors(N , W )
11: end if
12: push(Q, children(N ))
13: end if
14: end while
15: W ← FindNode(Gt ) or NewNode(root, Gt )
16: Add anchor descriptor for Gt to W .

Figure 6 shows the pattern tree at each timestep during the execution of the algorithm on
the network from Fig. 3. For clarity, we have described a very basic version of the algorithm.
Two notable aspects of this algorithm are (1) that it outputs all PSEs, which are a superset
of all PPSEs, and (2) it can dynamically calculate the purity measure. Non-parsimonious
PSEs can be post-processed out of the output, but in Sect. 6.6, we show how this can be
accomplished dynamically.

6.4 Correctness

The pattern tree is intended to hold all PSEs seen up to timestep t . We prove by induction
that this consistent state holds at any point during the execution of the algorithm. We define
a consistent state for the pattern tree as the following four conditions.

123



Periodic subgraph mining in dynamic networks

Definition 6.2 (Pattern tree consistency conditions) The pattern tree is in a consistent state
if the following four conditions are met:

1. The subgraph property of the pattern tree holds, i.e., all descendants of a treenode N /sub-
graph F contain subgraphs that are proper subgraphs of F .

2. All descriptors in the pattern tree are unique, i.e., no two descriptors D1 and D2 anywhere
in the tree share the same subgraph and the same support set.

3. All PSEs with support SP ≥ 2 encountered in the data stream so far have a descriptor
(and thus a treenode) in the tree.

4. All non-anchor descriptors represent PSEs that are closed up to timestep t , i.e., for a
descriptor D in a treenode N/subgraph F , F is the MCS of the support set described by
D, and the support set is temporally maximal at timestep t as per Definition 3.1.

If the tree is in a consistent state at timestep t , then the remaining output up to timestep t
can be obtained by traversing the tree once and writing every subgraph/descriptor pair where
the support of the PSE is |SP | ≥ σ . The tree is initially empty except for a dummy root node.
It is therefore consistent because the four consistency conditions are vacuously true. For
the inductive hypothesis, assume that the pattern tree is consistent after processing timestep
Gt−1. Then after processing Gt , we show below that the tree is still in a consistent state,
thus proving that the tree is in a consistent state during and at the end of the execution of the
mining algorithm. The following is the statement and proof of the inductive step.

Theorem 6.1 If the pattern tree is in a consistent state after processing Gt−1, then the
pattern tree is also in a consistent state after using Algorithm 1 to process Gt .

Proof On reading Gt from the input stream, the first two consistency conditions are not
violated because no new subgraphs or descriptors have been added to the tree. Conditions 3
and 4, on the other hand, might be violated because Gt could potentially contain a previ-
ously unseen PSE, violating condition 3, or require that an existing one have its support set
extended to include t , violating condition 4. Therefore, we start by focusing on events that
would violate the latter two consistency conditions, while showing that the first two remain
satisfied during processing. We describe each event in turn and how the consistency of the
tree is violated, as well as the correctness of the actions taken to restore consistency. The
following is an exhaustive list of such events, along with the action that the algorithm takes:

Case 1: Gt contains the first occurrence of a new PSE, violating condition 3; an anchor
descriptor starting at timestep t is added to a treenode for Gt in its entirety.

Case 2: Gt contains the nth occurrence of a new PSE, where n > 1 and prior occurrences
were contained within some other PSE, violating condition 3; the PropagateDe-

scriptors function is called. When n = 1, we have case 1 above.
Case 3: Gt contains the nth occurrence of an already existing PSE, where n > 1, violating

condition 4; the UpdateDescriptors function is called. Timestep t cannot be the
first occurrence for an existing PSE, by definition.

Case 1 The first possibility is that Gt could contain the first occurrence of a new PSE. Since
we have no way of knowing the future, we always assume that the entire graph Gt is going to
become a periodic subgraph in the future with timestep t as its first timestep.8 In Algorithm 1,
a treenode W is added for Gt at the root if one does not already exist in the tree, and an anchor

8 Incidentally, there is at least one dynamic network where each timestep contains the first occurrence of a
new PSE—the worst-case construction from Sect. 5.
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descriptor starting at t is added to W . Adding W at the root is a simple way to ensure that
condition 1 is never violated. The descriptor is guaranteed to be unique, because no other
PSE of Gt will have started at timestep t prior to Gt having been observed, and therefore
condition 2 is not violated. If we are correct about the assumption that timestep t is the first
occurrence of a new PSE for Gt , then we have ‘presciently’ added a descriptor and treenode
for it at the correct time, and ensured that condition 3 is not violated. On the other hand, if Gt

never occurs again, then its treenode will only contain an anchor descriptor, which is exempt
from condition 4. Therefore, case 1 no longer causes the tree to be inconsistent.

Case 2 Suppose that Gt is the nth occurrence of a new PSE, for n > 1. This happens when
a subgraph stops exhibiting periodic behavior, but a smaller portion of it continues to do so.
The treenode for the smaller subgraph might therefore need to ‘inherit’ some descriptors from
the treenode of the larger subgraph. For each treenode N /F , case 2 arises when F ∩Gt �= ∅
except when F ⊆ Gt (this exception is handled in the next case). Let C = F ∩Gt , the MCS
of F and Gt . Let W be the treenode for C , which is created in the tree (at a position that does
not violate condition 1) if it does not already exist.

We now need to copy descriptors where t j + p = t from N to W , since these descriptors
would have been updated if F had been observed in its entirety. Let D be one such descriptor.
D is now no longer live for N /F because it has failed to appear in its entirety at timestep t .
The propagation process transfers D to W if W does not already have a live descriptor of
the same period and phase offset D and an earlier starting position. Since treenodes N and
W represent different subgraphs, copying D from N to W does not violate condition 2. Fur-
thermore, since D was temporally maximal before, it is again temporally maximal with the
addition of t to its support set. This handles conditions 4 and 3, and case 2 no longer causes
the tree to be inconsistent.

Case 3 Finally, we handle the case that Gt is the nth occurrence of an existing PSE, for
n > 1. This happens when a treenode N /F has F ⊆ Gt , which means that F has appeared in
its entirety and its descriptors need to be updated. The update process scans each descriptor
D in treenode N . If D is next expected at timestep t , then t is added to its support set by
setting t j = t . This satisfied consistency condition 4. If D is no longer exhibiting periodic
behavior, i.e., if t j + p < t , then D is flushed to the output stream if appropriate and then
deleted. The other conditions are not violated. The final case is therefore handled correctly,
and the pattern tree is again in a consistent state. ��

We have inductively shown that Algorithm 1 results in a consistent tree after processing
each timestep Gt in increasing order of t . This proves the correctness of the algorithm.

6.5 Time and space complexity

Given that the tree consistency conditions hold, the number of descriptors (and therefore
nodes) in the tree at timestep T is bounded by Theorem 5.2 at σ = 2. As each timestep is
read, the tree is traversed once. When descriptors are created or propagated, we ensure that
at most one live descriptor exists at each treenode for a given period and phase offset. If the
list of periods and phase offsets of live descriptors in the treenode are represented as sparse
two-dimensional arrays, then lookup can be performed efficiently in amortized constant time
with O(P2

max) or O(T 2) space complexity to hold the arrays. Thus, the worst-case time com-
plexity of the algorithm involves traversing each descriptor in the tree once for each timestep
and calculating the MCS at each treenode. From Property 2.1, the MCS of two graphs can be
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calculated in time O(V+E). This yields a total time complexity of O((V+E)T 3 ln T ) when
Pmax is not specified. When Pmax is specified, the range of allowable periods is bounded in
Theorem 5.2 and the maximum number of patterns can drop very significantly. The worst-
case space complexity of our algorithm is O((V+E+P2

max)T
2 ln T ) when Pmax is specified.

In practice, however, the tree size is usually several orders of magnitude smaller than the
worst-case bound, as we will demonstrate.

6.6 Extensions to the basic algorithm

We have described a basic version of the mining algorithm in Sect. 6.3. A number of algorith-
mic refinements are possible to increase efficiency, but at the cost of conceptual simplicity.
We briefly describe some of these refinements below.

6.6.1 Mining parsimonious PSEs

The most important enhancement is to make the algorithm dynamically output only par-
simonious PSEs. Recall the subsumption conditions from Definition 3.3. A simple way to
modify Algorithm 1 to only output parsimonious PSEs is by adding an indicator bit to each
descriptor to indicate subsumption. This bit is initially cleared when the descriptor is created.
When any descriptor D from treenode N/F is flushed, its subsumed bit is first checked. If it
is cleared, then D is compared to all other live descriptors at N . If D is subsumed by another
descriptor, it is not written to the output. On the other hand, if D subsumes (as of timestep t)
some other descriptor D′, the subsumed bit for D′ is set. If the support of D′ increases in the
future, its subsumed bit is cleared since Condition 3 from Definition 3.3 is no longer true.
However, if its support does not increase, then all the conditions from Definition 3.3 hold
and D′ is not parsimonious. It will not be flushed when the cessation of its periodic behavior
is finally confirmed.

6.6.2 Sorted descriptor list

The list of descriptors at each node can be stored sorted by the next expected timestep of each
descriptor. At timestep t , only descriptors which are expected at or before t will be examined,
in addition to at most one descriptor that is expected after timestep t . This cuts down on the
number of descriptors that need to be examined during each tree update, at the computational
cost of having to sort the list of descriptors after each update. Since the number of descriptors
per treenode is generally not very large, the computational overhead is minimal in practice.

6.6.3 Lazy tree updates

In practice, the algorithm spends most of its running time calculating intersections of integer
sets (line 7 in Algorithm 1). Although the maximum common subgraph of two graphs is
calculated in time linear in the number of vertices and edges, the size of the graphs results
in a relatively expensive intersection computation. The sparsity of the network generally
results in a relatively small number of treenodes, which means that many such intersections
between large sets must be performed. Thus, to improve the practical efficiency of the algo-
rithm, we can delay calculating intersections until it is absolutely necessary. This results in the
lazy-intersection tree update algorithm shown in Algorithm 2. The tradeoff is that the total
support of patterns, and therefore the purity measure, cannot be dynamically calculated.
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Algorithm 2 LazyUpdateTree(Gt )
Require: Gt is the graph of timestep t
1: Q ← new queue
2: push(Q, root.children)
3: while N ← pop_front(Q) do
4: lazy← true
5: while lazy = true do
6: D← next descriptor at N
7: next← last(D)+ period(D)

8: if D is an anchor or next = T then
9: lazy← false
10: else
11: if next < T then
12: flush D to output and delete
13: else
14: break
15: end if
16: end if
17: end while
18: if lazy = false then
19: C ← Gt ∩ N
20: if C is not empty then
21: if N ⊆ Gt then
22: UpdateDescriptors(N )
23: else
24: W ← FindNode(N ) or NewNode(N , C)
25: PropagateDescriptors(N , W )
26: end if
27: push(Q, children(N ))
28: end if
29: else
30: push(Q, children(N ))
31: end if
32: end while
33: W ← FindNode(Gt ) or NewNode(root, Gt )
34: Add anchor descriptor for Gt to W .

6.6.4 Using a timeline to trim the tree

The timeline associates each future timestep with a list of treenodes that have at least one
descriptor expected at that timestep. It can be dynamically updated at an insignificant cost
(constant or logarithmic) once per treenode update, and stored in space linear in the number
of treenodes. After the tree update for timestep t , all treenodes that are still associated with
timestep t are guaranteed not to have been visited during the tree update, and have at least one
descriptor which is no longer periodic. These treenodes can then be visited and the invalid
descriptors removed, in time proportional to the number of descriptors to be removed. Thus,
at the end of each tree update operation, the treenode only contains descriptors that are live at
the next timestep. This ensures that the pattern tree contains a minimal number of descriptors
and treenodes at any given timestep.

7 Experimental evaluation

We use four real-world dynamic social networks to evaluate our algorithm as well as some
characteristics and applications of periodic subgraph mining. We also use artificial data
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to compare the performance of our algorithm with that of SMCA [20], a periodic pattern
mining algorithm that generates periodic patterns in a level-wise search similar to Apriori
and without closed or parsimonious considerations. SMCA is a four-phase algorithm and we
only use the first two phases (SPMiner and MPMiner), since their combined functionality
is comparable to our algorithm.9 We first report results on the comparison with SMCA on
synthetic data, before moving on to evaluating our algorithm on real dynamic networks.

We implemented our algorithm in C++, incorporating all the optimizations described in
Sect. 6.6. The subgraph hash map was implemented using the Google dense_hash_map
library,10 optimized for speed over memory usage. The experiments with synthetic data were
run on a dual-core Intel Pentium D system running at 3.2 GHz with 3 GB of RAM and Linux
kernel 2.6.28. The experiments with real data were run on a quad-core Intel Xeon server
running at 2.6 GHz with 24 GB of RAM and Linux kernel 2.6.22. In all cases, computa-
tion time is reported as the sum of the user (computation) and kernel (I/O, etc.) CPU time
reported by the Linux getrusage() system call. Memory usage is the maximum resident
set size reported by the Linux proc filesystem. The SPMiner and MPMiner components of
the SMCA algorithm were implemented in C++ according to the pseudocode in [20], and
use the same input, timing and output mechanisms as our algorithm.11

7.1 Datasets

We used dynamic networks collected from a variety of sources and covering a range of
interaction dynamics. These networks are described below.

Enron e-mails. The Enron e-mail corpus is a publicly available database of e-mails sent by
and to employees of the now defunct Enron corporation.12 Timestamps, senders and lists
of recipients were extracted from message headers for each e-mail on file. We chose a day
as the quantization timestep, with a directed (unweighted) interaction present if at least one
e-mail was sent between two individuals on a particular day.
Plains zebra. Ecologists are interested in studying the association patterns of wild Plains
zebras (Equus burchelli) in their natural habitat. For this dataset, social interactions between
animals were recorded in a nature reserve in Kenya by behavioral ecologists from Princeton
University, based on direct visual observations [16,22,33]. Zebras are uniquely identifiable
by the pattern of stripes on various parts of their bodies. The data were collected by ecologists
making visual scans of the herds, typically once a day over periods of several months. Each
entity in the dynamic network is a unique Plains zebra and an interaction represents social
association, as determined by spatial proximity and the domain knowledge of ecologists.
Reality mining. Cellphones with proximity tracking technology were distributed to 100 stu-
dents at the Massachusetts Institute of Technology over the course of an academic year [12].
The timestep quantization was chosen as 4 h [9].

9 The functionality is comparable in terms of the stated goal of the algorithm only, which is to mine periodic
‘multiple event 1-patterns’. SMCA suffers from the fact that it does not generate closed or parsimonious
output, thus increasing its computation time and output size relative to our algorithm, without adding any extra
information.
10 http://code.google.com/p/google-sparsehash/, version 1.4.
11 A misprint in the pseudocode for SPMiner in [20, (Fig 3, line 12)] was corrected. For MPMiner, we used
the Time-Based Enumeration (TBE) scheme, since the Segment-Based Enumeration (SBE) scheme exhausted
all available system memory for the datasets we tried.
12 Available at http://www.cs.cmu.edu/~enron/.
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Table 1 Dataset characteristics,
and smoothing (S) and maximum
period (Pmax) values used for
experimental evaluation

Dataset Vertices Timesteps Avg. density S Pmax

Enron 82,614 2,588 0.028 ± 0.064 3 40

IMDB photos (full) 29,257 13,987 0.097 ± 0.21 3 400

Plains zebra 313 1,276 0.31 ± 0.27 6 400

Reality mining 100 2,940 0.23 ± 0.17 2 60

Server Log 1 (days) 111,108 783 0.024 ± 0.019 2 40

Server Log 2 (hours) 111,108 18,807 0.24 ± 0.3 2 960

IMDB celebrities. The Internet Movie Database (IMDB)13 maintains a large archive of
tagged, disambiguated and dated photographs of individuals associated with the production
of commercial entertainment, including actors, directors, and musicians. One might reason-
ably assert that a degree of social (or at least professional) association exists between people
photographed together by the popular press. Thus, similar to the methodology of the Plains
zebra sightings, we collected metadata on 193,707 photos,14 which collectively represent
a partial structure of the social network of people associated with the entertainment indus-
try. The quantization period was 1 day. Although the time span of the dataset is just under
40 years, most of the interactions occur in the later portion of the dataset.
Server Logs. We used the HTTP access logs from an Apache web server hosting organi-
zation and personal pages for the Laboratory of Computational Population Biology at the
University of Illinois at Chicago.15 Each vertex is either an IP address on the Internet or a file
hosted on the web server. A directed edge from an IP address to a file indicates that the file
was successfully accessed by a host at the IP address, creating a bipartite graph at each time-
step. The log data runs from April 2007 to May 2009. We used two different quantizations
of 1 day and 1 h per timestep.

7.2 Results on natural data

7.2.1 Algorithm performance

We first ran a series of experiments on our algorithm with σ = 3 and no smoothing, i.e.,
mining only perfectly periodic patterns. We then ran a second set of experiments with Pmax

set to restricted values, and a third set of experiments with σ = 3 and variable amounts of
smoothing per dataset. Table 1 summarizes the Pmax and smoothing values used for each
dataset, based intuitively on typical periodicities and how much noise we would expect in
each dataset. The second and third set of experiments demonstrate the performance of the
algorithm in online and noisy situations, respectively.

Figure 7 shows the running time and memory usage of our algorithm under different
circumstances. The black column shows the case when no smoothing is used and the max-
imum period is unrestricted. This might be considered a typical ‘offline’ analysis scenario.
An interesting point to note is that Reality Mining takes much more time to complete mining

13 http://www.imdb.com.
14 In [25], we only used photos with two or more people, which is the reason for the dataset size discrepancy
between versions. For this dataset, it is also informative to represent singleton (disconnected) vertices, which
we have done here.
15 http://compbio.cs.uic.edu/.
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Fig. 7 Performance of the periodic subgraph mining algorithm at σ = 3, shown with an exponential y-axis.
a Mining time. b Memory usage

(a) (b)

Fig. 8 Number of pattern tree descriptors with no smoothing or restrictions on period (‘normal’), and for
various smoothing and Pmax values, compared to the theoretical bound. a Enron. b Reality mining

than the much larger Enron dataset, most likely due to the density of periodic patterns in it.
In the typical online analysis scenario with a restricted Pmax, the algorithm took less than
30 s to execute and used less than 40 MB of memory in all cases. As expected, restricting the
maximum period has a very significant effect on the performance of the algorithm.

Figure 8 shows the size of the pattern tree at each timestep for the Enron and Reality
Mining datasets. It can be seen that the actual tree size is a small fraction of the theoretical
upper bound. Furthermore, limiting the maximum period of mined patterns has a large impact
on reducing the tree size, as expected. The Enron plot dips dramatically after about timestep
2,000 because most timesteps after that are empty. A large number of descriptors are flushed
from the pattern tree when the empty timesteps are encountered. No such dip occurs in the
Reality Mining dataset, which is densely periodic and continues to exhibit periodic behavior
right up to the very end of the observation period.

7.2.2 Characterizing inherent periodicity

In addition to investigating specific periodic interaction patterns, a second goal for mining
parsimonious PSEs is to analyze global periodicities in the system. In the context of dynamic
networks, the goal would be to characterize the gross dynamics of the individuals in the
system. Figure 9 shows histograms of the periods of patterns mined from the Enron, IMDB,
Server Log and Plains Zebra datasets. For Enron, we restrict our attention to patterns with a
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(a) (b)

(c) (d)

Fig. 9 Number of patterns at each period. a Enron, avg Purity ≥ 0.7. b Internet Movie Database. c Server
Log 2, avg Purity ≥ 0.5. d Plains Zebra

high average purity, i.e., patterns which are likely to capture truly periodic behavior. Daily
interaction patterns are the most prevalent periodic patterns,16 followed by weekly patterns,
as manifested by the clear peak at p = 7. For the IMDB dataset, we notice a similar peak at
about p = 364. This can be explained by celebrity sightings at annual events—awards shows,
for example. Thus, we are able to capture and characterize plausible natural periodicities in
human interactions with no prior knowledge about the datasets. The hour-quantized Server
Log dataset shows a number of interesting peaks at about 24, 48 and 168 h (the last one cor-
responding to a periodicity of 1 week). Note that there is also relatively little variance around
the peak at 1 week, suggesting that these accesses were performed automatically. Inspecting
patterns at these periods revealed the activity of various search engine crawlers, confirmed
by checking ownership of IP netblocks and User-Agent strings in the HTTP requests. The
Plains Zebra dataset showed a wide range of periodicities, as one might expect of animal
behavior, with no strongly discernible peaks.

Figure 9a and c are histograms of the periods of patterns that are above a minimum purity
threshold. Clearly, changing this threshold could result in a different picture, as patterns of
lower purity get included. Figure 10 shows a two-dimensional view of the histograms as a
density plot. Each row represents a histogram as in Fig. 9, but thresholded by the value of
the y-axis. Darker cells represent a higher concentration of patterns at that period (relative
to the most concentrated cell in the row), and correspond to the peaks in Fig. 9. The top-
most row is the distribution of the periods of patterns that only occur periodically, i.e., never

16 Too much importance should not be attached to patterns of period 1 in plots thresholded by purity, since
all patterns of period 1 necessarily have purity 1.
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(a)

(b)

(c)

Fig. 10 Pattern density at each minimum purity threshold. Each row shows the distribution of pattern peri-
ods for patterns with purity at or greater than the y-axis value. Darker cells indicate more patterns. a Enron.
b Reality mining. c Plains Zebra

in-between periodic occurrences, whereas the lowest row places no constraints and shows
the period distribution of all mined patterns. In Fig. 10a, for example, the row corresponding
to a y-value of 0.7 represents the histogram in Fig. 9a.

The Enron and Reality Mining datasets show strong daily and weekly periodicities, as
might be expected from human interactions. This commonality is interesting because the
interactions occur by different mechanisms in each dataset—by e-mail in the Enron dataset,
and by physical proximity in the Reality Mining dataset. The Plains Zebra dataset, while
not showing periodicities as strong as the human datasets, seems to contain relatively dense
region at periods between 25 and 38. It is currently unclear whether this region indicates
behavior that is ecologically meaningful, or is an artifact of the data.

7.2.3 Qualitative analysis

We now turn our attention to some qualitatively interesting periodic subgraphs discovered
by our algorithm illustrating a range of periodic behavior. Figure 11a illustrates a somewhat
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Fig. 11 Examples of some interesting periodic subgraphs. a IMDB: period 7 ± 2, support 3, avg. purity 1,
b IMDB: period 364, support 3, avg. purity 0.4, c Enron: period 1, support 84, avg. purity 1. Bold circles
represent @enron.com e-mail addresses, d Plains: period 7, support 4, avg. purity 0.94, e Plains: period 61±6,
support 3, avg. purity 0.71, f Plains: period 81± 6, support 4, avg. purity 1

complex pattern from the IMDB photo database that repeated approximately every week.
Although the support is relatively low, what is interesting about this subgraph is the repeated
non-trivial grouping of people, all of whom turned out to be contestants on a weekly ‘reality
television’ show. Figure 11b is also from the IMDB database and is an approximately annu-
ally repeating pattern. The three individuals in the clique are actresses in a popular (circa
2004) television show, while the fourth vertex is the spouse (as of 2009) of one of the actres-
ses. Given this context, the low average purity of the pattern is to be expected as the three
actresses are very likely to have appeared together in between what are likely to be award
shows. The non-trivial links in such patterns are particularly interesting and are indicative of
the show’s progression or relationships other than co-starring.

The subgraph shown in Fig. 11c has the highest periodic support in the Enron dataset,
repeating every day for 84 consecutive days, including weekends. This is representative of
a large number of similar periodic patterns in Enron, in which one person emails a group of
people with periods ranging from 1 to 14 days. As shown earlier in Fig. 9, weekly emails
seem to be particularly popular in a corporate setting such as this, and could be used to infer
functional communities within the corporation.
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Finally, we turn to the Plains Zebra dataset and to one of the most intriguing patterns
shown in Fig. 11d. Although it is quite likely that the period of 7 days is an artifact of the
manner in which the population was sampled, the high purity of the pattern indicates that this
is a relatively stable grouping. It is also by far the largest and most repetitive such pattern,
parts of which are periodic at other times as well. In contrast, the subgraphs that repeat over
multiple months are shown in Figs. 11e and f. Although the support of the latter two patterns
is relatively low, the high purity of Fig. 11f stands out and is representative of a large number
of small but highly periodic patterns. Moreover, all the patterns are of interactions of stallion
male zebras and correspond to their harems grouping for a period of time. Such groupings
are indeed considered more stable for short periods of time than bachelor associations [16].

7.3 Comparison to SMCA

We generated relatively small synthetic datasets with different characteristics to compare the
performance of our algorithm with the SMCA algorithm on simple interaction data. Starting
with a population of 30 individuals, we generated a single graph of density d . The edges of
this graph were then sampled independently at random for each of the T timesteps. Although
this is not intended to be a realistic model of a social network, it allows us to control two
parameters crucial to the mining process—the overall density of the dynamic network, and
the number of timesteps. Since real social networks are generally sparse, we used two values
for d: 0.1 and 0.15. For each of these values, T was varied from 100 to 1,000 in increments
of 100.

Ten random dynamic networks were generated for each combination of T and d , and
converted to their set representations. Both algorithms were run on the same set of synthetic
networks with a minimum support value of σ = 3 and the maximum period unrestricted,
calculated using Proposition 5.2 for each value of T . All algorithms were limited to 8 GB of
disk space for storing their output, which can be considered reasonable given that this value
is several orders of magnitude larger than the size of the input networks.

Figure 12 shows the performance of SMCA compared to our algorithm. The computa-
tion time used by both algorithms is comparable for density d = 0.1, although SMCA does
not scale as well as our algorithm. For a slightly higher density of d = 0.15, the number
of periodic patterns is expected to increase as well. The computation times are no longer
comparable between algorithms, as shown in Fig. 12b. In Figs. 12b and d, there are no data
points for SMCA beyond T = 500 since the algorithm reached the maximum output size
of 8 GB prior to completion. This is partly caused by the fact that SMCA does not output
closed or parsimonious patterns, which is evident from the number of patterns generated by
SMCA, shown in Figs. 12c and d on a logarithmic scale.

Thus, our algorithm scales much better than SMCA. The number of patterns generated by
SMCA is generally about three orders of magnitude larger than the number of parsimonious
patterns output by our algorithm. The intractability of non-parsimonious periodic pattern
mining is one of the main reasons we could not use SMCA on the larger natural datasets,
where the number of vertices, timesteps, and the average timestep density are much higher
than the values used here.

8 Conclusion

We have proposed and formalized the periodic subgraph mining problem for dynamic net-
works and analyzed the computational complexity of enumerating all periodic subgraphs. We
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Fig. 12 The performance of SMCA compared to our algorithm, for synthetic networks of different densities
d. Error bars for PSEMiner are too small to see. a Mining time: d = 0.1. b Mining time: d = 0.15. c Number
of mined patterns: d = 0.1. d Number of mined patterns: d = 0.15

have shown that there are at most O(T 2 ln T
σ
) closed periodic subgraphs at minimum sup-

port σ in a dynamic network of T timesteps. Furthermore, we have described a polynomial
time, online algorithm to mine all periodic subgraphs, including a smoothing mechanism
for mining subgraphs that are not perfectly periodic. We have also proposed a new mea-
sure, purity, for ranking mined subgraphs according to how perfectly periodic a subgraph is.
We have demonstrated our algorithm on four real-world dynamic social networks, span-
ning interactions between corporate executives, college students, wild zebra, and Hollywood
celebrities. Our algorithm efficiently mines all periodic patterns, is provably tractable, and is
a meaningful alternative to using frequent subgraph mining to look for interesting patterns in
dynamic networks. We have also shown that periodic subgraphs can be used as an effective
characterization of the dynamics of various systems. Our technique was able to discover
plausible natural periodicities in many of the systems we examined, and shows promise as a
tool for exploratory analysis of interaction dynamics.

There are a number of interesting avenues for future research. One such direction is to
incorporate probabilistic models of periodicity instead of strictly combinatorial ones. Yang
et al. [39] and Ma and Hellerstein [26] are two examples of such attempts; it would be
interesting to see how well they perform in dynamic networks. Along the lines of various
studies on assessing the interestingness of frequent patterns [5,34,36], a method for assess-
ing the statistical significance of mined patterns under different statistical models would be
valuable in dynamic networks, especially in the context of inter-disciplinary research. A num-
ber of extensions can also be made to the algorithm we have presented in this paper. These
include an extension to mine complex periodic patterns, similar to the types of patterns mined
in [19,20,26,40], and different algorithms or heuristics for manipulating the structure of the
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pattern tree to increase efficiency. The concept of noise could also be extended to discover
noisy subgraphs instead of just noisy periodicities. Finally, we believe that the capabilities
of the method, especially in an inter-disciplinary context, can only be fully explored if the
results of the mining process are presented or visualized in a succinct but insightful manner.
This is a challenging and open question.
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