
Mining Periodic Behavior in Dynamic Social Networks

Mayank Lahiri
University of Illinois at Chicago

Dept. of Computer Science
Chicago, IL 60607, USA

mlahiri@cs.uic.edu

Tanya Y. Berger-Wolf
University of Illinois at Chicago

Dept. of Computer Science
Chicago, IL 60607, USA

tanyabw@cs.uic.edu

Abstract

Social interactions that occur regularly typically corre-
spond to significant yet often infrequent and hard to detect
interaction patterns. To identify such regular behavior, we
propose a new mining problem of finding periodic or near
periodic subgraphs in dynamic social networks. We ana-
lyze the computational complexity of the problem, showing
that, unlike any of the related subgraph mining problems, it
is polynomial. We propose a practical, efficient and scal-
able algorithm to find such subgraphs that takes imperfect
periodicity into account. We demonstrate the applicability
of our approach on several real-world networks and extract
meaningful and interesting periodic interaction patterns.

1. Introduction

Monthly e-mail newsletters, yearly family reunions, and
familiar faces of strangers at the morning coffee shop –
these are all regular and significant patterns that are eas-
ily lost to the observer in the mass of social interaction data.
Due to recent technological advances, one can now mon-
itor large populations of humans, animals and networked
computers, and know precisely when one entity in the pop-
ulation interacts with another. Whether it is an exchange of
e-mails or a phone call between humans, connections made
between networked computers or a GPS-tagged wild Zebra
stallion associating with a specific harem [13], real-world
patterns of interactions can be studied and recorded at a
finer time scale than ever before. In this paper, we propose a
formal and practical method for identifying periodically re-
curring patterns from streams of interaction data, and show
that the technique can be used to explore the inherent peri-
odicity of interactions in a population.

Social networks are graphs that are used to model and
analyze the structure of relationships between a set of enti-
ties. The nature and scope of social network data, however,
have grown well beyond traditional applications in sociol-

ogy [28] and contemporary study in physics [2, 26]. Con-
ventional social networks are now superseded by continu-
ous streams of dynamic interaction data, or dynamic net-
works, which have opened the way to new techniques for
analyzing the underlying populations [2–4, 9, 22, 23].

We propose a novel data mining problem for dynamic
networks: periodic subgraph mining, or the discovery of
all interaction patterns that occur at regular time intervals.
Consider two potential applications of this technique: the
first, based on the premise that periodic patterns represent
stable interaction patterns, is that these patterns can be of
qualitative interest in and of themselves. Ecologists, for
example, tag wild herds of animals with tracking devices
in order to study their movements and social patterns [19].
Periodic subgraphs in this case correspond to seasonal as-
sociation or mating patterns, which are of biological inter-
est, especially if these patterns are hidden in large quanti-
ties of effectively random animal movements and associa-
tions [13]. A second application stems from the fact that, by
virtue of repeating regularly, periodic behavior can be pre-
dictable behavior. Dynamically mining predictable interac-
tions from sensor logs can be used, for example, in various
types of ubiquitous and mobile computing [11].

We therefore center our work around two fundamental
claims necessary for both applications: first, that many so-
cial systems inherently do contain patterns that recur with a
natural periodicity. Second, that all such patterns can be ex-
tracted for analysis from a dynamic network in an efficient
and tractable manner.

Our contributions in this paper are as follows:

• We formally define the problem of periodic subgraph
mining for dynamic networks in Section 2. Our def-
inition combines concepts from frequent pattern min-
ing [14] and earlier formulations of periodic pattern
mining in other types of data (e.g. sequences [30] and
eventsets [15, 17]).

• We theoretically analyze the problem in Section 3 and
show that it lies in the complexity class P (polynomial),

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.104

373

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.104

373

unlike the more general frequent subgraph mining prob-
lem. We also obtain asymptotic and exact upper bounds
on the time complexity of enumerating all periodic sub-
graphs in a dynamic network.

• In Section 4, we propose a novel measure for ranking
a mined periodic subgraph by how close it is to being
perfectly periodic, rather than by the number of its oc-
currences.

• In Section 5, we describe a polynomial time, parameter-
free, single-pass algorithm for mining all periodic sub-
graphs from a dynamic network. Our algorithm also
accommodates the mining of noisy periodic subgraphs
in which the period is ‘almost’ constant.

• In Section 6, we evaluate our algorithm and the gen-
eral characteristics of periodic subgraphs on four di-
verse, real-world dynamic networks spanning corporate
executives, college students with Bluetooth cellphones,
GPS-tagged wild animals, and Hollywood celebrities.

2. Problem Definition and Related Work

Let V ∈ N represent a set of unique entities whose inter-
actions are recorded over a period of time and divided into
T discrete timesteps of equal duration. This type of data
constitutes a dynamic network [22], where the objects of in-
terest are interaction patterns between vertices and how they
change over time. The analysis of dynamic networks is a
relatively new field and recent work has focused on random
graph models for the generation of dynamic networks [2,
22, 25], mining for frequently occurring patterns [4, 9], de-
tecting communities and analyzing graph theoretic proper-
ties [3, 20].

In this paper, we are interested in finding interaction pat-
terns in dynamic networks that occur periodically. The ap-
proach we synthesize is based on two different problems in
data mining – frequent pattern mining in transactional and
graph databases [14, 18, 21], and periodic pattern mining
in unidimensional and multidimensional sequences [12, 15,
17, 24, 30, 31]. By combining aspects of both approaches,
we obtain a theoretically sound characterization of periodic
behavior in dynamic networks, that we will show in Sec-
tion 6 is also empirically plausible.

Definition 1. A dynamic network G = 〈G1, ..., GT 〉 is a
time-series of graphs, where Gt = (Vt, Et) is the graph
of interactions Et observed at timestep t, among the set of
uniquely labeled entities Vt ⊆ V .

A key characteristic of each graph Gt ∈ G is that ver-
tices are uniquely labeled. From a computational point of
view, this class of graphs has more in common with sets,
and various hard graph problems such as maximum com-
mon subgraph and subgraph isomorphism are reduced to

quadratic complexity in the number of nodes [10]. Interac-
tions can be either directed or undirected, and the exact def-
inition of what constitutes an ‘interaction’ depends on the
application. Generally, a continuous stream of interaction
data is quantized into temporal segments of equal duration;
the methods of such quantization are beyond the scope of
this paper. The types of data that we deal with, however,
have natural quantizations such as hours or days.

Before we formally define the problem of mining peri-
odic subgraphs, we recall some concepts from the field of
frequent pattern mining and extend them to dynamic net-
works.

Definition 2. For an arbitrary graph F = (Vf ⊆ V , Ef ⊆
Vf × Vf), its support set in G is the set of timesteps where
F is a subgraph of Gt, denoted F � Gt:

S(F) = {t : F � Gt}
F is a frequent subgraph of G if |S(F)| ≥ σ where 1 ≤
σ ≤ T is a user-defined minimum support threshold.

LetF (σ) be the set of all frequent subgraphs of G at min-
imum support σ. Definition 2 implies that for any frequent
subgraph F ∈ F (σ) all its subgraphs are also frequent and,
thus, are also in F (σ). This is the downward closure prop-
erty and is the basis of early pattern mining algorithms like
the a priori algorithm [1]. Naturally, there is a large amount
of redundant information in such a set. The concepts of
maximal and closed frequent subgraphs aim to reduce the
size of F (σ) without losing much (or any) information.

Definition 3. A frequent subgraph F ∈ F (σ) is maximal
if there is no other frequent subgraph F ′ ∈ F (σ) where
F ≺ F ′. F (σ)

max ⊆ F (σ) is the set of maximal frequent
subgraphs.

Definition 4. A frequent subgraph F ∈ F (σ) is closed if it
is maximal at some support σ ′ ≥ σ [27]. F (σ)

closed ⊆ F (σ) is
the set of closed frequent subgraphs.

In Figure 1, F1 = {(1, 2), (1, 3), (1, 4), (1, 5)} is the
only frequent maximal subgraph at σ = 2. At the same min-
imum support, there are three closed frequent subgraphs:
F1 itself, F2 = {(1, 2), (1, 3)} and F3 = {(1, 4), (1, 5)},
the latter two of which are maximal at σ = 3. Note that
F (σ)

max ⊆ F (σ)
closed ⊆ F (σ), and that F (σ)

closed can be expo-

nentially smaller than F (σ). Furthermore, both F (σ)
max and

F (σ) can be recovered from F (σ)
closed (albeit not in polyno-

mial time). We thus restrict our attention to closed sub-
graphs only, as they represent in a certain sense coherent
and complete interaction patterns.

Definition 5. A periodic support set or periodic subgraph
embedding (PSE) of an arbitrary graph F = (Vf , Ef) in G,
where Vf ⊆ V , is a maximal, ordered set of timesteps where

374374

Figure 1. Frequent and periodic subgraphs at
σ = 3. {(1, 2), (1, 3)} is frequent but not peri-
odic, whereas {(1, 4), (1, 5)} is both.

F is a subgraph of Gt, such that the difference between
consecutive timesteps in the set is constant.

SP (F) = 〈t : F � Gt〉, and ∀i : ti+1 − ti = p

The constant p is the period of F , and F is a periodic sub-
graph if it has at least one such embedding with |SP (F)| ≥
σ, where σ is the minimum support threshold.

The notion of a closed periodic subgraph carries over
from Definition 4. Note that Definition 5 allows a subgraph
F to have multiple periodic embeddings in G with different
starting positions, supports and periods. Furthermore, these
embeddings can overlap as long as each support set is max-
imal. Figure 1 shows an example of a closed subgraph that
is frequent but not periodic, and another that is both.

Definition 6 (Periodic Subgraph Mining Problem).
Given a dynamic network G and a minimum support
threshold σ ≥ 2, the PERIODIC SUBGRAPH MINING prob-
lem is to identify all closed periodic subgraphs in G

Since real-world networks are unlikely to contain per-
fectly periodic patterns, we conclude with a definition of
what constitutes ‘near’ periodicity.

Definition 7. A noisy subgraph exhibits jitter in its period
if its period is near-constant rather than constant. Given a
jitter value of J ≥ 0, we extend Definition 5 to account for
noise as follows:

SP (F) = 〈t : F � Gt〉, and ∀i : |ti+1 − ti − p| ≤ J

3. Complexity of Mining Periodic Subgraphs

In this section, we prove that there are at most a poly-
nomial number of closed periodic subgraphs embeddings in
any dynamic network and obtain an exact upper bound on
this number. Furthermore, what is surprising is that enu-
merating all closed PSEs can be done in time polynomial in
the size of the input, proving that the mining problem is in
the complexity class P. This is in contrast to the more gen-
eral frequent subgraph mining problem, which is NP-hard
for enumeration and #P-complete for counting even with

unique node labels [5, 29]. We take advantage of the intrin-
sic polynomial complexity of the problem to design an effi-
cient single-pass mining algorithm in Section 5. We do not
include jitter in the following analysis, and purely algebraic
manipulations are omitted for brevity.

Theorem 1. PERIODIC SUBGRAPH MINING in dynamic
networks is in P.

To prove Theorem 1, we derive an upper bound on the
number of closed PSEs possible in a dynamic network of
T timesteps, and then show that they can be enumerated
(mined) in polynomial time. We explicitly construct the
worst-case dynamic network to count all closed PSEs. In
order to do this, we utilize the concept of a projection – a
periodic slicing of a discrete time sequence [12].

Definition 8. Given a dynamic network G, a projection
πm,p of G is a subsequence of graphs

πm,p = 〈G1+m, G1+m+p, G1+m+2p, ...〉,
where p is the period of the projection and 0 ≤ m < p is
the phase offset.

Proposition 1. A subgraph F is periodic at minimum sup-
port σ if and only if it is embedded in σ consecutive posi-
tions of some projection πm,p.

Corollary 1. The maximal common subgraph of every σ
consecutive positions of every projection, if not empty, is a
periodic subgraph.

The proof of Proposition 1 follows from the definitions
of periodicity and projection. We use its corollary as the
basis for constructing the worst-case instance: by placing a
different edge in each σ consecutive positions of every pro-
jection of the network, we ensure that each edge becomes a
unique periodic subgraph.

Proposition 2. Given a minimum support σ, a dynamic net-
work G cannot contain more maximal PSEs than one in
each σ-length window of every projection of G.

Proof. Consider a dynamic network G with the given prop-
erty, i.e. that each σ-length window of every projection
contains a maximal PSE. Clearly, no more maximal PSEs
can be created at support σ, since they would overlap com-
pletely with an existing maximal PSE and not increase the
total count. PSEs at support less than σ fall outside the prob-
lem definition. Assume then that the number of maximal
PSEs can be increased by creating one at support σ + 1.
By the Pigeonhole Principle, such F necessarily overlaps
at least two other existing maximal periodic subgraphs at
support σ. Both of those subgraphs now contain F as a
subgraph, but are still maximal because each contains an
edge exclusive to it. Thus, F is not maximal and G cannot
contain any more maximal PSEs.

375375

To explicitly state the upper bound on the number of
maximal periodic subgraphs we first compute bounds on
several other parameters.

Proposition 3. In a dynamic network with T timesteps, the
maximum period of any periodic subgraph with support at
least σ is P = �(T − 1)/(σ − 1)�.
Proposition 4. In a dynamic network with T timesteps, the
length of any projection is s = |πm,p| = (T −m)/p�.

The proofs of the Propositions 3 and 4 are straightfor-
ward and similar to those in [12]. Given the above expres-
sions, we now derive an exact bound by construction.

Theorem 2. In a dynamic network with T timesteps, there
are at mostO(T 2σ−1) maximal periodic subgraphs at min-
imum support σ.

Proof. From Proposition 2, we consider each projection
πm,p independently. The maximal common subgraph, if not
empty, of any σ consecutive timesteps of this projection can
constitute a unique maximal periodic subgraph. Let s be the
length of the projection defined in Proposition 4. There are
therefore at most s−σ+1 possible windows of size σ in any
projection, and thus as many maximal periodic subgraphs.
Summing this expression over all possible values of m and
p, we obtain the following upper bound on the total number
of possible maximal periodic subgraphs:

P∑
p=1

p−1∑
m=0

(s− σ + 1) =
�T−1

σ−1 �∑
p=1

p−1∑
m=0

(⌈
T −m

p

⌉
− σ + 1

)

Relaxing the floor and ceiling expressions from Proposi-
tions 3 and 4 to T−1

σ−1 and (T−m
p +1), respectively, we obtain

an expression that is O(T 2σ−1).

We have computed an asymptotic upper bound on the
number of maximal periodic subgraphs. We now extend
our approach to compute an upper bound on the number of
closed periodic subgraphs. In order to do this, we take ad-
vantage of Definition 4 to construct a worst-case instance
for closed periodic subgraph enumeration by simply adding
a new set of maximal subgraphs for each support value
greater than or equal to σ.

Theorem 3. In a dynamic network with T timesteps, there
are at most O(T 2 ln T

σ) closed periodic subgraphs at min-
imum support σ.

Proof. From Definition 4, the number of closed periodic
subgraphs is the sum of the number of maximal periodic
subgraphs for each level of support σ ≤ σ ′ ≤ T , which we
obtain from Theorem 2:

T∑
σ′=σ

⌊
T−1
σ′−1

⌋
∑
p=1

p−1∑
m=0

(⌈
T −m

p

⌉
− σ′ + 1

)

Figure 2. A periodic subgraph (bold) with
non-periodic embeddings.

Relaxing again the floor and ceiling expressions, we ob-
tain an expression that is O(T 2 ·H(T−1

σ−1)), where H(n) =∑n
k=1

1
k is the nth harmonic number, asymptotically ap-

proximated by lnn. Thus, the number of closed pe-
riodic subgraphs at minimum support σ is bounded by
O(T 2 ln T

σ).

To finally prove Theorem 1, consider an algorithm that
outputs the maximal common subgraph of every σ length
window of every projection. Since the maximal common
subgraph can be found in timeO(V +E) [10], the algorithm
runs in time Θ((V +E)T 2 ln T

σ) and is guaranteed to output
every closed periodic subgraph (as well as duplicates, but no
non-periodic subgraphs). Thus, the mining problem is in P,
and the exact bound on the number of closed PSEs is given
in summation form in Theorem 3.

4. Ranking Mined Subgraphs

Frequent and periodic pattern mining methods can gen-
erate a very large number of small patterns at all but the
highest minimum support values. On the other hand, poten-
tially significant patterns could occur at lower supports and
be lost in the sheer number of such patterns. Thus, while
we combinatorially extract periodic patterns, statistical or
heuristic ranking schemes for mined patterns are useful for
practical applications [6, 16, 30]. We therefore propose an
additional measure to rank periodic closed subgraphs ac-
cording to how perfectly periodic they are.

A periodically recurring subgraph is not necessarily rep-
resentative of an interaction pattern that occurs only period-
ically, as shown in Figure 2. The purity measure expresses
how likely it is that a periodic subgraph embedding occurs
only at its periodically predictable timesteps.

Definition 9. Given a periodic subgraph embedding F
with period p, starting at timestep i and with support s =
|SP (F)|, the purity of F is the ratio of its periodic support
to its total support in the timestep range [i, i + p(s− 1)].

purity(F) =
s

|{t : F � Gt, i ≤ t ≤ i + p ∗ (s− 1)}|
It is sometimes advantageous to define the purity of a

subgraph as the average purity of its edges. Doing so is
more representative of the temporal characteristics of the

376376

subgraph as a whole and favors periodic subgraphs whose
edges do not occur in between periodic embeddings. We use
the term ‘purity’ to refer to average purity for the remainder
of this paper.

Definition 10. The average purity of a subgraph F =
(V, E) is the average purity of all of its edges.

avgPurity(F) =
1
|E|

∑
e∈E

purity(e)

5. The Algorithm

We now present an efficient, single-pass, polynomial
time and space algorithm for mining all closed periodic sub-
graphs in a dynamic network. Our algorithm does not re-
quire any parameters to be set but optionally accepts the
following:

1. Minimum support threshold σ ≥ 2 (default: 2).

2. Minimum and maximum period Pmin and Pmax (de-
fault: unrestricted).

3. Maximum jitter in period J ≥ 0 (default: 0).

Although there is a natural bound on the maximum pe-
riod if the number of timesteps T is finite and known a
priori, our algorithm is designed for cases when this infor-
mation is not available, such as in streaming sensor data.
Unrestricted period size in such cases places a very large
computational burden on the algorithm as the entire dataset
has to be retained. The optional user-defined Pmax parame-
ter limits the maximum period of mined patterns and results
in a truly online algorithm.

5.1. Mining PSEs using a Pattern Tree

The foundation of the algorithm is a pattern tree that
maintains information about all patterns that are either
currently periodic or could become periodic at a future
timestep. As each new timestep is read, the pattern tree
is traversed and updated with the information. Any patterns
that are no longer periodic are flushed, and new periodic
patterns are possibly created.

The algorithm maintains two data structures: the pat-
tern tree and a subgraph hash map. Each node in the
pattern tree contains a subgraph and a descriptor for each
closed periodic embedding of the subgraph encountered.
Formally, a descriptor for a subgraph F is an ordered pair
D = 〈S = SP (F), p〉, where S is the periodic support set
of the embedding of F and p the period. Let next(D) rep-
resent the timestep at which F is next expected, i.e. the last
element of the support set plus the period.

The structure of the pattern tree is subject to a single
constraint: all descendants of a node F represent proper

subgraphs of F , but not all subgraphs of F are necessarily
its descendants. This property allows the tree to be built
and manipulated quickly and represented using very little
space. Since the pattern tree is traversed for each new ob-
servation, once a new observation is known not to have any
common subgraph with a particular node, all descendants of
that node can be eliminated from the tree traversal. Figure 3
shows an example of a pattern tree.

The second component of the algorithm, the subgraph
hash map, associates an arbitrary subgraph with its node in
the tree, if one exists, in amortized constant lookup time.
This is used by the update algorithm, and due to the unique
node labels of each graph in the dynamic network, hashing
subgraphs is efficient.

Proposition 5. The time complexity of hashing a periodic
subgraph F = (V, E) of a dynamic network is at most the
complexity of hashing a string of length |V |+ |E|.
Proof. Since V ∈ N, any given subgraph contains at most
one node v = n for any n ∈ N. Thus, each edge is uniquely
identified by an arbitrary mapping τ : v1 × v2 → N. Since
no self-loops are allowed in the input, a singleton vertex
v can be represented as τ(v, v). Applying τ to every edge
and singleton vertex in a subgraph maps it to a set of natural
numbers, which can be hashed as a string.

To reduce redundancy in mined patterns we introduce
the notion of pattern subsumption. For example, a periodic
embedding of subgraph F at period 2 with support 5 also
contains an embedding at period 4 with support 3, but the
latter contains no new information given the former. Thus,
the period 2 pattern subsumes the period 4 pattern. Note
that subsumption does not strictly fall within Definition 6.

Definition 11. Given two descriptors, D1 = 〈S1, p1〉 and
D2 = 〈S2, p2〉, for the same periodic closed subgraph, D1

subsumes D2 if S2 ⊆ S1 and p2 = kp1 for an integer k > 0.

Although the algorithm is designed to operate in a single
pass of the data, if the Pmax parameter is kept unrestricted,
the entire dataset will be retained in memory as a subgraph
of any timestep might become periodic in the future. With
a restricted Pmax, only the relevant portion of the data will
be retained.

5.2. Update Algorithm

We now describe the update algorithm for the pattern
tree. Starting with an initially empty pattern tree, at timestep
t the algorithm reads the next graph Gt from the input
stream and traverses the pattern tree to update nodes with
the new information. At any point in the execution of the
algorithm, a complete list of periodic subgraphs seen so far
can be obtained from the tree.

377377

For each Gt, we selectively traverse the tree in a breadth-
first manner. We end each tree update by ensuring that a
node for Gt in its entirety exists in the tree with an anchor
descriptor for timestep t. This accounts for the possibility
that Gt is the first occurrence of a periodic subgraph. Dur-
ing the breadth-first traversal of the tree, one of the follow-
ing three conditions hold at each tree node N 1:

Update descriptors If N � Gt, then N has appeared in its
entirety at timestep t. For all descriptors D, if next(D)
= t, then t is added to the support set. If next(D) < t,
then the descriptor is removed from the tree and flushed to
the output stream if its support is greater than σ. Finally, any
anchor descriptors at N are used to generate new periodic
descriptors if the resultant period p′ ≤ Pmax.

Propagate descriptors Let C = N ∩ Gt �= ∅ be the non-
empty maximal common subgraph of N and G t. A sub-
graph C of N is present at timestep t, and if N has any
descriptors D such that next(D)= t, then the node for C
receives a copy of D if it is not subsumed by an existing
descriptor at C. If a node for C does not already exist in the
tree (determined using the hash map), it is created as a child
of N . Figure 3 illustrates this case. At timestep 5, there
is no node for the subgraph F3 = {(1, 4), (1, 5)}, although
one exists for the larger F1 = {(1, 2), (1, 3), (1, 4), (1, 5)}.
However, F3 has been present at timesteps 1 and 3 as well,
so it needs to receive a copy of the descriptor D = 〈S =
{1, 3}, p = 2〉.
Dead subtree If C is empty, then Gt and N have no com-
mon subgraph. Furthermore, no child of N will have any
common subgraph with Gt either, since they are all sub-
graphs of N . The subtree rooted at N is therefore elimi-
nated from the rest of the tree traversal.

Figure 3 shows the pattern tree at each timestep during
the execution of the algorithm on the network from Fig-
ure 1. For brevity, we have described a very basic version
of the full algorithm. Clearly, nodes and descriptors ex-
pire after a certain amount of time and can be deleted from
the tree, improving efficiency. Furthermore, subsumption
of redundant descriptors can be performed efficiently while
the algorithm is running. The basic outline described here,
however, is efficient even without these optimizations.

To output all periodic patterns at any point during the
execution of the algorithm, we traverse the tree and print
all descriptors D = 〈S, p〉 and their associated subgraphs
where |S| ≥ σ.

5.3. Complexity Analysis

There are two types of nodes in the tree: those with only
an anchor descriptor, and those with valid periodic descrip-

1When referring to a pattern tree node, we generally refer to the peri-
odic subgraph which it contains.

Figure 3. Pattern tree for Figure 1.

Algorithm 1 UPDATETREE(Gt)
Require: Gt is the graph of timestep t

1: Q ← new queue
2: push(Q, root.children)
3: while N ← pop front(Q) do
4: C ← Gt ∩N
5: if C is not empty then
6: if N � Gt then
7: UPDATEDESCRIPTORS(N)
8: else
9: W ← FINDNODE(N) or NEWNODE(N, C)

10: PROPAGATEDESCRIPTORS(N, W)
11: end if
12: push(Q, children(N))
13: end if
14: end while
15: W ← FINDNODE(Gt) or NEWNODE(root, Gt)
16: Add anchor descriptor for Gt to W .

tors. The latter type represent periodic closed subgraphs
with support greater than or equal to 2. Since each de-
scriptor corresponds to a unique periodic embedding, the
number of non-anchor descriptors (and hence the number
of such nodes) is bounded by the number of periodic closed
subgraphs at σ = 2, orO(T 2 lnT). At most one anchor de-
scriptor is added per timestep, so the asymptotic bound on
the total number of nodes does not change. Since the tree is
traversed exactly once per timestep, the overall worst-case
time complexity for the algorithm is O((V + E)T 3 ln T).
The maximum period parameter (if set) greatly reduces the
time and space complexity of the algorithm.

5.4. Jitter Heuristic

The jitter heuristic allows the detection of patterns with
periods that are ‘almost’ constant. For a subgraph with pe-
riod p, we allow a distance of p±J timesteps between con-
secutive occurrences instead of exactly p. In cases where
more than one occurrence of a subgraph satisfies this crite-
ria, the occurrence that minimizes the time difference from
the expected position is chosen. We note that the jitter
heuristic does not preserve the theoretic complexity bounds
of the algorithm, but is nonetheless efficient in practical

378378

cases as we will demonstrate in Section 6.

6. Experimental Evaluation

We use four real-world dynamic social networks to eval-
uate our algorithm and the general characteristics of peri-
odic subgraphs.

6.1. Datasets

The tested dynamic social networks were collected using
a variety of sources and cover a range of social dynamics.
Enron E-mails The Enron e-mail corpus is a publicly avail-
able database of e-mails sent by and to employees of the
now defunct Enron corporation.2 Timestamps, senders and
lists of recipients were extracted from message headers for
each e-mail on file. We chose a day as the quantization
timestep, with a directed interaction present if at least one
e-mail was sent between two individuals on a particular day.
Plains Zebra Social interactions of Plains zebra (Equus
burchelli) in Kenya were recorded by direct observations
made by behavioral ecologists from Princeton Univer-
sity [13]. The data is made from visual scans of the popula-
tions, typically once a day over periods of several months.
Each entity is a Plains zebra and the interactions represent
association as determined by GPS spatial proximity and the
domain knowledge of ecologists.
Reality Mining Cellphones with proximity tracking tech-
nology were distributed to 100 students at the Mas-
sachusetts Institute of Technology over the course of an aca-
demic year [11]. The timestep quantization was chosen as
4 hours [8].
IMDB Celebrities The Internet Movie Database (IMDB)3

maintains a large archive of tagged and dated photographs
of individuals associated with the production of commer-
cial entertainment, including actors, directors and musi-
cians. One might reasonably assert that a degree of social
association exists between people photographed together by
the popular press. Thus, similar to the methodology of the
Plains Zebra sightings, we collected metadata on 45,477
photos with two or more people, which collectively repre-
sents a partial structure of the social network of people as-
sociated with the entertainment industry. The quantization
period was one day.

6.2. Experimental Setup

We implemented our algorithm in C++ and ran it on
a dual-core AMD Athlon 64 system with 2 GB of RAM

2Available at http://www.cs.cmu.edu/∼enron/
3http://www.imdb.com

Dataset Vertices Timesteps Avg. density
Enron 82,614 2,588 0.028± 0.064
IMDB 15,011 13,967 0.22 ± 0.23
Plains Zebra 313 1,276 0.31 ± 0.27
Reality Mining 100 2,940 0.23 ± 0.17

Table 1. Dataset characteristics

and Linux kernel 2.6.24. The subgraph hash map was im-
plemented using the Google dense_hash_map library4,
which is optimized for speed over memory usage. For fre-
quent closed subgraph mining, we converted the dynamic
networks to transactional itemsets using Proposition 5 and
used the open-source MAFIA algorithm [7] running on an
Intel Xeon quad-core server with 24 GB of RAM and Linux
kernel 2.6.22. Since mining frequent subgraphs at low min-
imum support is generally intractable, we started at a very
high minimum support value and progressively reduced it
until either the size of the mined pattern file exceeded 512
MB or the algorithm did not terminate after 5 days. 5

We first ran a series of experiments on our algorithm with
σ = 3 and no jitter, i.e. mining only perfectly repeating
patterns. We then ran a second set of experiments with σ =
3 and variable amounts of jitter. For Enron and IMDB, we
chose a jitter of ± 2 days so that the resulting 5-day slack
window would capture monthly and annual patterns, e.g.
those that occur on the first Monday of every month. Since
Reality Mining is a relatively dense and heavily periodic
dataset, we chose a minimal jitter value of ± 1 timestep, or
± 4 hours. For the Plains Zebra dataset, we chose the jitter
to be the average time between consecutive observations.

Table 2 shows the performance of our algorithm and
the number of periodic closed subgraphs mined from each
dataset. The frequent subgraph mining algorithm took on
the order of days to complete even at much higher mini-
mum support values than 3. However, since it is inherently
an exponential time algorithm, as compared to our poly-
nomial time periodic subgraph miner, we do not compare
their relative performances. Note that the Pmax parameter,
not the minimum support, is the determining factor in the
scalability of the algorithm. We left Pmax unrestricted, so
Table 2 represents worst-case performance in this regard.

6.3. Results

We return to our two initial claims: that dynamic so-
cial networks have inherent periodicity, and that these pe-
riodic interaction patterns can be extracted in an efficient
and tractable manner. We also comment on the usefulness

4http://code.google.com/p/google-sparsehash/
5The time and space requirements of the MAFIA algorithm grew expo-

nentially with decreasing σ, as is theoretically expected.

379379

Dataset No jitter Variable jitter
Time (s) Memory (MB) # Patterns Jitter Time (s) Memory (MB) # Patterns

Enron 53.5 157 84,017 ± 2 150 180 863,112
IMDB 1.76 29 68 ± 2 1.89 29 276
Plains Zebra 3.56 27 2,241 ± 6 5.14 32 34,887
Reality Mining 156 110 98,258 ± 1 342 120 227,441

Table 2. Performance of the periodic subgraph mining algorithm at σ = 3.

of our proposed measure and on the qualitative properties
of some interesting mined subgraphs.

6.3.1 Inherent Periodicity

Figure 4 shows the distribution of periods of patterns mined
from the Enron and IMDB datasets. For Enron, we restrict
our attention to patterns with a high average purity, i.e. pat-
terns which are likely to capture truly periodic behavior. We
note that daily interaction patterns are the most prevalent pe-
riodic patterns, followed by weekly patterns as manifested
by the clear peak at p = 7. For the IMDB dataset, we no-
tice a similar peak at about p = 364. This can be explained
by celebrity sightings at annual events – awards shows, for
example. Thus, our algorithm captures the inherent peri-
odicity in the datasets with no prior knowledge and shows
promise as a tool for exploratory analysis. The Plains Zebra
dataset showed a wide range of periodicities, as one might
expect of animal behavior.

Period
0 5 10 15 20 25 30 35 40

C
ou

nt

1

10

100

1000

(a) Enron: J = 0,
avgPurity > 0.8

Period
0 100 200 300 400

C
ou

nt

5

10

15

20

25

(b) IMDB: J = 2

Figure 4. Number of patterns at each period

6.3.2 Tractability

Table 2 demonstrates that our algorithm is eminently
tractable in terms of execution time and space usage. How-
ever, periodic subgraph mining is also tractable in the sense
that, unlike frequent subgraph mining, it does not gener-
ate an overwhelming number of patterns. Figure 5 shows
characteristic examples of the support distribution of fre-
quent subgraphs compared to periodic subgraphs. Ignoring
the fact that we were unable to mine frequent subgraphs at

supports below 25 for Enron and 11 for Plains (which mani-
fests in the left-truncated histograms for frequent subgraphs
in Figure 5), we can see that periodic subgraphs are much
fewer and exist at lower support levels than frequent sub-
graphs. Thus, under practical circumstances, the majority
of this important class of patterns would be out of reach of
frequent subgraph mining algorithms.

Figure 6 shows the size of the pattern tree at each
timestep for the Enron and Plains datasets on a logarith-
mic scale. It can be seen that the actual tree size is a small
fraction of the theoretical upper bound, even when the jitter
heuristic is used. Furthermore, limiting the maximum pe-
riod of mined patterns has a large impact on reducing the
tree size, as expected.

Support
0 10 20 30 40 50

C
ou

nt

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6
Frequent
Periodic

(a) Plains: J = 6

Support
0 10 20 30 40 50 60 70

C
ou

nt
1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6
Frequent
Periodic

(b) Enron: J = 0

Figure 5. Partial view of support distribution
of frequent (gray) and periodic (black) pat-
terns. The frequent pattern distribution is
left-truncated due to intractability.

6.3.3 Qualitative Analysis

We now turn our attention to some qualitatively interesting
periodic subgraphs discovered by our algorithm illustrating
a range of periodic behavior. Figure 7(a) illustrates a some-
what complex pattern from the IMDB photo database that
repeated approximately every week. Although the support
is relatively low, what is interesting about this subgraph is
the repeated non-trivial grouping of people, all of whom
turned out to be contestants on a weekly ‘reality television’
show. Figure 7(b) is also from the IMDB database and is an
approximately annually repeating pattern. The three indi-

380380

Timestep
0 500 1000 1500 2000 2500

Tr
ee

 s
iz

e

1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7
1e+8
1e+9
1e+10
1e+11

Theoretical bound

Max. jitter = 2

Pmax = 30

Normal

(a) Enron

Timestep
0 200 400 600 800 1000 1200

Tr
ee

 s
iz

e

1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7
1e+8
1e+9
1e+10

Theoretical bound

Max. jitter = 6

Pmax = 40
Normal

(b) Plains

Figure 6. Number of pattern tree descriptors
compared to theoretical bound.

viduals in the clique are actresses in a popular (circa 2004)
television show, while the fourth node is the spouse (as of
2008) of one of the actresses. Given this context, the low
average purity of the pattern is to be expected as the three
actresses are very likely to have appeared together in be-
tween what are likely to be award shows. The nontrivial
links in such patterns are particularly interesting and are
indicative of the show’s progression or relationships other
than co-starring.

The subgraph shown in Figure 7(c) has the highest pe-
riodic support in the Enron dataset, repeating every day for
84 consecutive days, including weekends. This is repre-
sentative of a large number of similar periodic patterns in
Enron, in which one person emails a group of people with
periods ranging from 1 to 14 days. As shown earlier in Fig-
ure 4, weekly emails seem to be particularly popular in a
corporate setting such as this, and could be used to infer
functional communities within the corporation.

Finally, we turn to the Plains Zebra dataset and to one of
the most intriguing patterns shown in Figure 7(d). Although
it is quite likely that the period of 7 days is an artifact of the
manner in which the population was sampled, the high pu-
rity of the pattern indicates that this is a relatively stable
grouping. It is also by far the largest and most repetitive
such pattern, parts of which are periodic at other times as
well. In contrast, the subgraphs that repeat over multiple
months are shown in Figures 7(e) and 7(f). Although the
support of the latter two patterns is relatively low, the high
purity of Figure 7(f) stands out and is representative of a
large number of small but highly periodic patterns. More-
over, all the patterns are of interactions of stallion male Ze-
bras and correspond to their harems grouping for a period
of time. Such groupings are indeed considered more stable
for short periods of time than bachelor associations [13].

7. Conclusion

We have proposed and formalized the periodic subgraph
mining problem for dynamic networks and analyzed the

BillyRayCyrus

JoeyFatone

HeatherMills

ApoloOhno

LailaAli

JohnRatzenberger

(a) IMDB: period 7 ± 2, sup-
port 3, avg. purity 1

FelicityHuffman

EvaLongoriaParker

NicolletteSheridanWilliamH.Macy

(b) IMDB: period 364, support 3,
avg. purity 0.4

al@friedwire.com

kevin.cline eric.saibi seung-taek.oh ryan.williams juan.padron

(c) Enron: period 1, support 84, avg. purity 1. Bold circles
represent @enron.com e-mail addresses.

287

354

659

027

472

602

717

531

791

1132

050

626

649

139

587

051

191

402

1056

121

131

(d) Plains: period 7, support 4, avg. purity 0.94.

295 744

641

485 727 1143

(e) Plains: period 61±6,
support 3, avg. purity 0.71

667

162

(f) Plains: period
81±6, support 4,
avg. purity 1

Figure 7. Examples interesting periodic sub-
graphs.

computational complexity of enumerating all periodic sub-
graphs. We have shown that there are at most O(T 2 ln T

σ)
closed periodic subgraphs at minimum support σ in a dy-
namic network of T timesteps. Furthermore, we have de-
scribed a polynomial time, parameter-free, one-pass algo-
rithm to mine all periodic subgraphs, including a ‘jitter’
heuristic for mining subgraphs that are not perfectly peri-
odic. We have also proposed a new measure, purity, for
ranking mined subgraphs according to how perfectly peri-
odic a subgraph is. We have demonstrated our algorithm
on four real-world dynamic social networks, spanning in-
teractions between corporate executives, college students,
wild Zebra, and Hollywood celebrities. Our algorithm effi-
ciently mines all periodic patterns, is a provably tractable,
and is a meaningful alternative to using frequent subgraph

381381

mining to look for interesting patterns in dynamic networks.
We have shown that dynamic social networks contain inher-
ently periodic non-trivial patterns, and our technique shows
promise for exploratory analysis of natural periodicities.

8. Acknowledgements

We are grateful to Dan Rubenstein, Ilya Fischhoff, and
Siva Sundaresan of the Department of Ecology and Evo-
lutionary Biology at Princeton University for sharing the
Plains Zebra data. Their work was supported by the NSF
grants CNS- 025214 and IOB-9874523. We thank Kapil
Thadani for valuable discussions. This work is supported
by NSF grants IIS-0705822 and CAREER IIS-0747369.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-
sociation Rules in Large Databases. In Proc. of the 20th Intl.
Conf. on Very Large Data Bases, pg. 487–499, 1994.

[2] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,
and T. Vicsek. Evolution of the social network of scientific
collaborations. Physica A, 311(3–4):590–614, 2002.

[3] T. Y. Berger-Wolf and J. Saia. A framework for analysis of
dynamic social networks. In Proc. of the 12th ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining, pg.
523–528, 2006.

[4] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pat-
tern Mining in Frequent Dynamic Subgraphs. In Proc. of the
6th IEEE Intl. Conf. on Data Mining, pg. 818–822, 2006.

[5] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On
the complexity of generating maximal frequent and minimal
infrequent sets. In Proc. of the 19th Annual Symp. on Theo-
retical Aspects of Computer Science, pg. 133–141, 2002.

[6] B. Bringmann and A. Zimmermann. The chosen few: On
identifying valuable patterns. In Proc. of the 7th IEEE Intl.
Conf. on Data Mining, pg. 63–72, 2007.

[7] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal
frequent itemset algorithm for transactional databases. Proc.
of the 17th Intl. Conf. on Data Eng., pg. 443–452, 2001.

[8] A. Clauset and N. Eagle. Persistence and Periodicity in a
Dynamic Proximity Network. DIMACS/DyDAn Wkshp. on
Comput. Methods for Dynamic Interaction Networks, 2007.

[9] P. Desikan and J. Srivastava. Mining Temporally Evolving
Graphs. In Proc. of WebKDD 2004, pg. 22–25, 2004.

[10] P. J. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. On
Graphs with Unique Node Labels, LNCS vol. 2726, pg. 409–
437. Springer Berlin, 2003.

[11] N. Eagle and A. S. Pentland. Reality mining: sensing com-
plex social systems. Personal and Ubiquitous Computing,
10(4):255–268, 2006.

[12] M. G. Elfeky, W. Aref, and A. Elmagarmid. Periodicity de-
tection in time series databases. IEEE Trans. on Knowledge
and Data Engineering, 17(7):875–887, 2005.

[13] I. R. Fischhoff, S. R. Sundaresan, J. Cordingley, H. M.
Larkin, M.-J. Sellier, and D. I. Rubenstein. Social rela-
tionships and reproductive state influence leadership roles
in movements of plains zebra, Equus burchellii. Animal Be-
haviour, 73(5):825–831, May 2007.

[14] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern
Mining: Current Status and Future Directions. Data Mining
and Knowledge Discovery, 15(1):55–86, 2007.

[15] J. Han, Y. Yin, and G. Dong. Efficient Mining of Partial Pe-
riodic Patterns in Time Series Database. In Proc. of the 15th
Intl. Conf. on Data Engineering, pg. 106–115, Los Alami-
tos, CA, 1999. IEEE Computer Society.

[16] H. He and A. Singh. Graphrank: Statistical modeling and
mining of significant subgraphs in the feature space. In Proc.
of the 6th Intl. Conf. on Data Mining, pg. 885–890, 2006.

[17] K.-Y. Huang and C.-H. Chang. SMCA: A General Model
for Mining Asynchronous Periodic Patterns in Tempo-
ral Databases. IEEE Trans. on Knowl.and Data Eng.,
17(6):774–785, 2005.

[18] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-
gorithm for mining frequent substructures from graph data.
In Proc. of the 4th Eur. Conf. on Principles of Data Mining
and Knowl. Disc., pg. 13–23, 2000.

[19] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with Ze-
braNet. ACM SIGPLAN Notices, 37(10):96–107, 2002.

[20] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and
inference problems for temporal networks. In Proc. of the
32nd annual ACM Symp. on Theory of Comput., pg. 504–
513, 2000.

[21] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. Proc. of the 2001 IEEE Intl. Conf. on Data Mining, pg.
313–320, 2001.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In Proc. of the 11th ACM SIGKDD Intl. Conf.
on Knowl. Disc. in Data Mining, pg. 177–187, 2005.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction prob-
lem for social networks. In Proc. of the 12th Intl. Conf. on
Inf. and Knowl. Management, pg. 556–559, 2003.

[24] S. Ma and J. L. Hellerstein. Mining partially periodic event
patterns with unknown periods. In Proc. of the 17th Intl.
Conf. on Data Eng., pg. 205–214, 2001.

[25] M. E. J. Newman. Clustering and preferential attachment in
growing networks. Physical Review E, 64(2):25102, 2001.

[26] M. E. J. Newman. The structure of scientific collaboration
networks. PNAS, 98:404–409, 2001.

[27] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient
mining of association rules using closed itemset lattices. In-
formation Systems, 24(1):25–46, 1999.

[28] S. Wasserman and K. Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[29] G. Yang. The complexity of mining maximal frequent item-
sets and maximal frequent patterns. In Proc. of the 10th
ACM SIGKDD Intl. Conf. on Knowl. Disc. and Data Min-
ing, pg. 344–353, 2004.

[30] J. Yang, W. Wang, and P. S. Yu. Infominer+: Mining partial
periodic patterns with gap penalties. In Proc. of the 2002
IEEE Intl. Conf. on Data Mining, page 725, 2002.

[31] J. Yang, W. Wang, and P. S. Yu. Mining asynchronous pe-
riodic patterns in time series data. IEEE Trans. on Knowl.
and Data Eng., 15(3):613–628, 2003.

382382

